AN EVALUATION OF TAGGING MORTALITY AND TAG RETENTION IN AGE-0 HUMPBACK CHUB, GILA CYPHA

David Ward, Kirk Young, Bill Persons, Dennis Stone, Randy VanHaverbeke, and William Knight

Purpose/Need

- Protocols/Permitting >99mm
- Info gaps
- 100 mm ~ 1-5 year old fish
- Literature
- Rio Grande silvery minnow > 60mm (Archdeacon et al. 2009)
- Moapa springfish > 47mm (Dixon \& Mesa 2011)
- Lost River sucker > 72mm (Burdick 2011)
- New $8 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ PIT tag

Study Objective:

- Determine the smallest size that age-0 humpback chub can be effectively PIT tagged with $12.5 \mathrm{~mm} \times 2 \mathrm{~mm}$ and $8.4 \mathrm{~mm} \times 1.4 \mathrm{~mm}$ tags.

Approach:

4 size groups

- $40-50 \mathrm{~mm} ; 50-60 \mathrm{~mm}$
- 60-70mm; 70-80mm

3 treatments / 1 control:
$12 \mathrm{~mm} ; 8 \mathrm{~mm}$; VIE

- 40 fish/treatment; 160 fish per size group; 640 total Fish spawned, reared \& implanted at SNARRC Held w/in size \& treatment groups - 60 days Assessed:
- Mortality, Retention - Daily
- Growth/Weight - Post 60 days
- Logistic Regression, JMP

Shed \& Mortality- Temporal

Fish Size	Tag Type	\# Died	\% Died	\# Shed	\% Shed
$\begin{gathered} 40-50 \mathrm{~mm} \\ \mathrm{HBC} \end{gathered}$	8 mm	5	12.5	5	12.5
	12 mm	8	20	12	30
	VIE (2 marks)	0	0	7*	17.5
	Control	0	0	NA	NA
$\begin{gathered} 50-60 \mathrm{~mm} \\ \mathrm{HBC} \end{gathered}$	8 mm	3	7.5	10	25
	12 mm	8	20	9	22.5
	VIE (2 marks)	2	5	7*	17.5
	Control	1	2.5	NA	NA
$\begin{gathered} 60-70 \mathrm{~mm} \\ \text { HBC } \end{gathered}$	8 mm	0	0	0	0
	12 mm	2	5	5	12.5
	VIE (2 marks)	1	2.5	5*	12.5
	Control	0	0	NA	NA
$\begin{gathered} 70-80 \mathrm{~mm} \\ \text { HBC } \end{gathered}$	8 mm	0	0	1	2.5
	12 mm	0	0	2	5
	VIE (2 marks)	0	0	3*	7.5
	Control	0	0	NA	NA

12 mm PIT Tag

8 mm PIT Tag

Probability of Survival - 12 mm PIT tag

Probability of Tag Retention - 12 mm PIT tag

Total Length

Percent Probability of Survival

Total Length (mm)	8mm PIT $(95 \% \mathrm{CI})$	12 mm PIT	$(95 \% \mathrm{CI})$	
45	83	$(64-93)$	76	$(60-87)$
50	94	$(86-98)$	84	$(74-90)$
55	98	$(90-99)$	89	$(82-94)$
60	99	$(92-100)$	93	$(87-97)$
65	99	$(93-100)$	96	$(89-98)$
70	99	$(94-100)$	97	$(91-99)$
75	99	$(96-100)$	98	$(92-99)$
80	100	$(96-100)$	99	$(94-100)$

Percent Probability of Retaining a PIT Tag

Total Length (mm)	8 mm PIT	$(95 \% \mathrm{CI})$	12 mm PIT	$(95 \% \mathrm{CI})$
45	77	$(61-87)$	63	$(49-75)$
50	83	$(74-89)$	72	$(62-80)$
55	88	$(81-92)$	80	$(72-86)$
60	91	$(85-95)$	86	$(79-91)$
65	94	$(88-97)$	90	$(83-95)$
70	96	$(89-98)$	93	$(86-97)$
75	97	$(90-99)$	96	$(88-98)$
80	98	$(91-99)$	97	$(90-99)$

Considerations \& Outcomes

- Ideal environment \& Fish were in excellent shape/ body condition - results may differ in field
- 8 mm vs. 12 mm - tag conflict? still work to do
- VIE tags short-term tag loss higher than expected location and fast growing fish (temp)
- Will use this information to inform permit limits
- Investigators may use this information to inform PIT tag-based studies
- Management Note - Journal of Fisheries Mgmt.

Thank You

