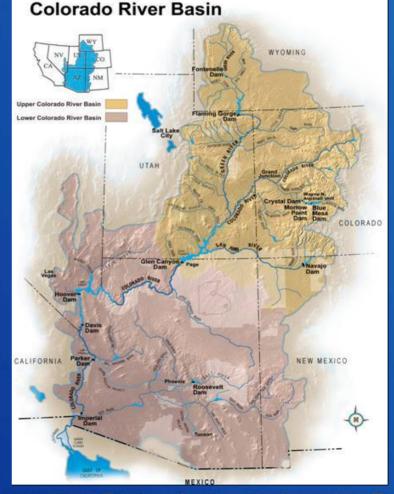
RECLANATION Managing Water in the West

Reclamation's Long-Term Planning Model: Colorado River Simulation System (CRSS)

Colorado River Commission of Nevada Las Vegas, NV September 16, 2009

U.S. Department of the Interior Bureau of Reclamation

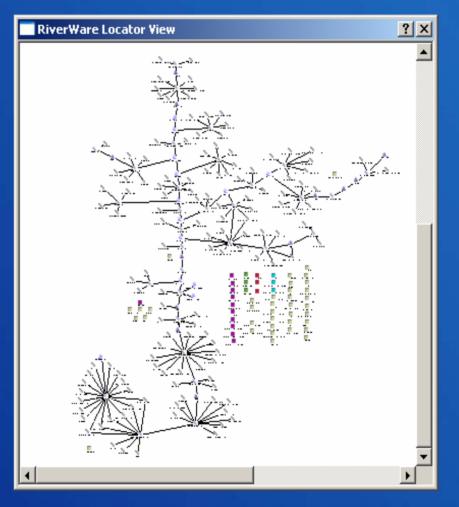
CRSS Overview


- Background & Configuration
- Operating Policy
- Hydrology
- Results and Future Direction

Background

- Comprehensive model of the Colorado River Basin
 - Developed by Reclamation in the early 1970s
 - Implemented in RiverWare[™] in 1996
 - Primary tool for studying river operations and projected development
 - Used in a number of environmental compliance studies, most recently in the Shortage/Coordinated Operations EIS
- Updated and maintained continually by Reclamation's Colorado River Modeling Work Group
- Run by stakeholders in Colorado River Stakeholder Modeling Work Group
- Two "official" simulations are made each year (January and August)
 - Simulation in January begins in current year with initial reservoir conditions as actual end of the previous year
 - Simulation in August begins in next year with initial reservoir conditions as projected by the August 24-Month Study

CRSS: A Basin-Wide, Long-Term Planning and Policy Model

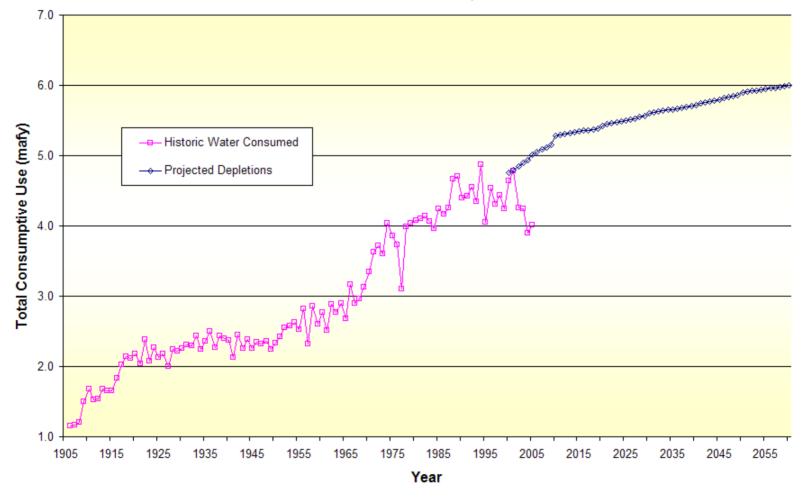

- Not a predictive model
- Excellent for comparative analysis
 - Hold most variables constant between model runs
 - Compare the differences due to changing the variables of interest
- Gives a range of potential future system conditions
- Examples:
 - Reservoir levels
 - Releases
 - River flows

Configuration

• Physical layout:

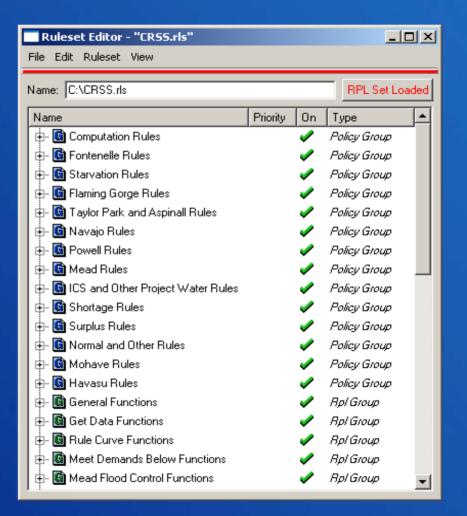
- Full basin model from the headwaters of the mainstem and major tributaries, down to the Northerly International Boundary with Mexico
- Reservoirs: 12
- Diversions: ~225
- Natural inflow points: 29
- Simulates on a monthly timestep over decades to assess long-term system conditions

Major Inputs to Model


- Initial Reservoir Conditions
 - Historical or projected by the 24-Month Study
- Future Demands
 - Upper Basin from the Upper Colorado River Commission
 - Lower Basin from each state, including ICS schedules
- Operating Policy
 - Interim Guidelines in effect through 2026
 - Assumption needed to run past 2027, e.g. operations revert to Final EIS No Action Alternative

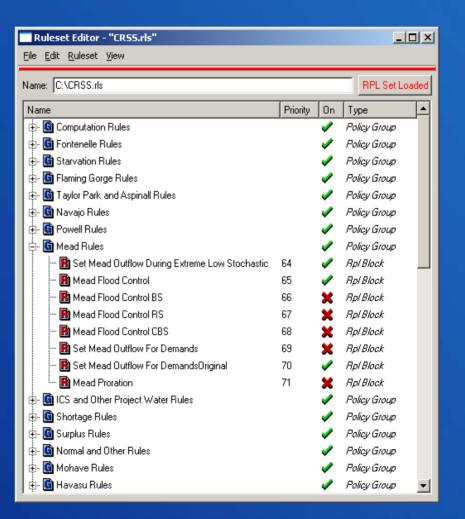
A

- Future Inflows
 - Results are most sensitive to future inflows
 - Deal with uncertainty by running multiple scenarios using historical and paleo inflows to postulate future inflows


Upper Basin Consumptive Use

includes CRSP reservoir evaporation

Operating Policy


- Operating policies are prioritized as "Rules"
- A group of rules and functions (a "Ruleset"), along with user inputs, provide the necessary information for the model to solve
- Rules drive simulation by providing the necessary logic (e.g., IF statements) to mimic how the system would be operated in practice

 $\Delta N/$

Major Operating Rules in CRSS

- Upper Basin Reservoirs
 above Lake Powell
- Lake Powell
- Lake Mead
- Lakes Mohave and Havasu

Operating Policy Upper Basin Reservoirs Above Lake Powell

- For the following Upper Basin Reservoirs:
 - Fontenelle and Flaming Gorge (Green River)
 - Taylor Park, Blue Mesa, Morrow Point, Crystal (Gunnison)
 - Navajo (San Juan)
- Basic operation:
 - Release water sufficient to meet monthly storage targets (or "rule curves") and downstream demands, within fixed minimum and maximum releases
- Upcoming Development:
 - Update operations to reflect new operational policies recently adopted (Flaming Gorge, Blue Mesa, Morrow Point, Crystal and Navajo)
 - Anticipate the development will be complete by summer of 2010

Simulated Inflow Forecast for Lake Powell in CRSS

- Lake Powell Inflow forecast is simulated from January through July
- Inflow forecast is based on:
 - observed natural flow for the current year
 - monthly error term
 - previous months error
 - random error component
- Inflow forecast changes each month

Lake Powell Capacity

2 700 84 -		24.3 maf
3,700 ft	Equalization Tier	
2 (20 B	Equalization Elevation (WY 2009)	
3,639 ft	+	15.72 maf
3,638 ft	Upper Elevation Balancing Tier	(65% of Live Capacity)
3,575 ft	148 ft	
	Mid-Elevation Release Tier	
3,525 ft		
	Lower Elevation Balancing Tier	
3,490 ft		Minimum
	Inactive Pool (4.0 maf)	Power Pool
3,370 ft		Dead Pool
	Dead Pool (1.9 maf)	
Not to scale	As of Aug 30, 2009 RECLAN	IATION

Operating Policy Lake Mead – Hoover Dam

- Two modes of governing annual Lake Mead releases:
- Meet Downstream Demands
 - Downstream demands include:
 - California 4.4 maf
 - Arizona 2.8 maf
 - Nevada 0.3 maf
 - Mexico 1.5 maf
 - Regulation of Lakes Mohave and Havasu
 - System gains and losses
 - Demands can be modified based on Surplus or Shortage
- Flood Control Operations
- Rules decide operating mode for each year of simulation

Lake Mead Capacity

Surplus Conditions

1,219.6 ft

1,094 ft

1,075 ft

1,050 ft

1,000 ft 895 ft

Not to scale

Normal or ICS Surplus Conditions

Shortage Conditions

Inactive Pool (7.5 maf

Dead Pool (2.0 maf)

As of Aug 30, 2009

15.9 maf

25.9 maf

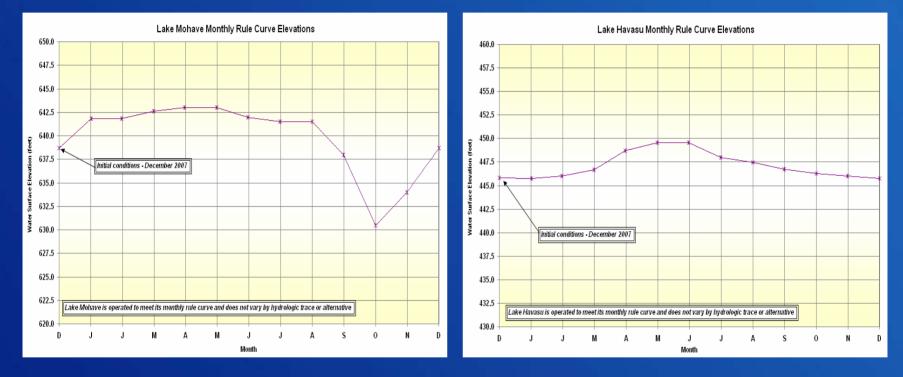
10.94 maf (42% of Live Capacity)

Minimum Power Pool

Lower SNWA Intake Dead Pool Elevation

Lake Powell and Lake Mead Operational Diagrams for 2009

Lake Powell			Lake Mead		
Elevation	Opertaions According	Live Storage	Elevation	Opertaions According	Live Storage
(feet)	to the Interim Guidelines	(MAF)	(feet)	to the Interim Guidelines	(MAF)
3,700	Equalization Tier Equalize, Avoid Spills or Release 8.23 MAF	24.3	1,220	Flood Control or 70R Surplus	25.9
3,636 - 3,666 (2008-2026)		15.5 - 19.3 (2008-2026)	1,200	Domestic Surplus	22.9
3638	Upper Elevation Balancing Tier ¹	15.72		or ICS Surplus	
8/30/09	Release 8.23 MAF; if Lake Mead < 1,075 feet, balance contents with	8/30/09	1,145		15.9
3.575	a min/max release of 7.0 and 9.0 MAF	9.5	1,105 <u>1094</u>	Normal Operations or ICS Surplus	11.9 10.94
3,575	Mid-Elevation Release Tier	9.5	<mark>8/30/09</mark> 1,075		8/30/09 9.4
	Release 7.48 MAF; if Lake Mead < 1,025 feet,		1.050	Shortage 333 KAF ²	7.5
3,525	Release 8.23 MAF;	5.9	1,050	Shortage 417 KAF ²	/.5
	Lower Elevation Balancing Tier		1,025	Shortage 500 KAF ²	5.8
3,490	Balance contents with a min/max release of 7.0 and 9.5 MAF	4.0	1,000	and Consultation ³	4.3
3,370		0	895		0


CLAN

1 Subject to April adjustments that may result in balancing releases or releases according to the Equalization Tier.

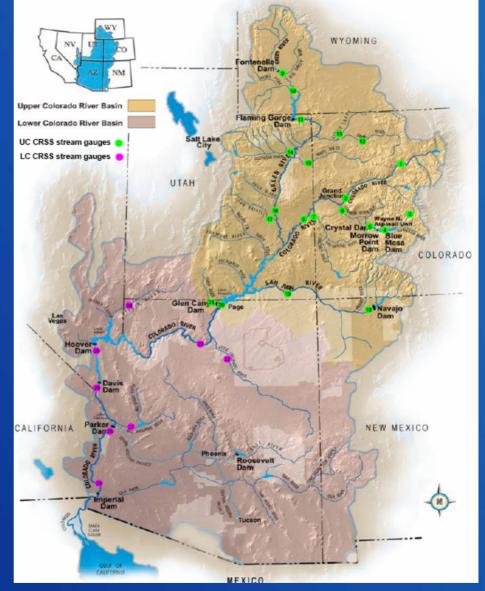
2 These are amounts of shortage (i.e., reduced deliveries in the United States).

3 If Lake Mead falls below elevation 1,025 ft msl, the Department will initiate efforts to develop additional guidelines for shortages at lower Lake Mead elevations.

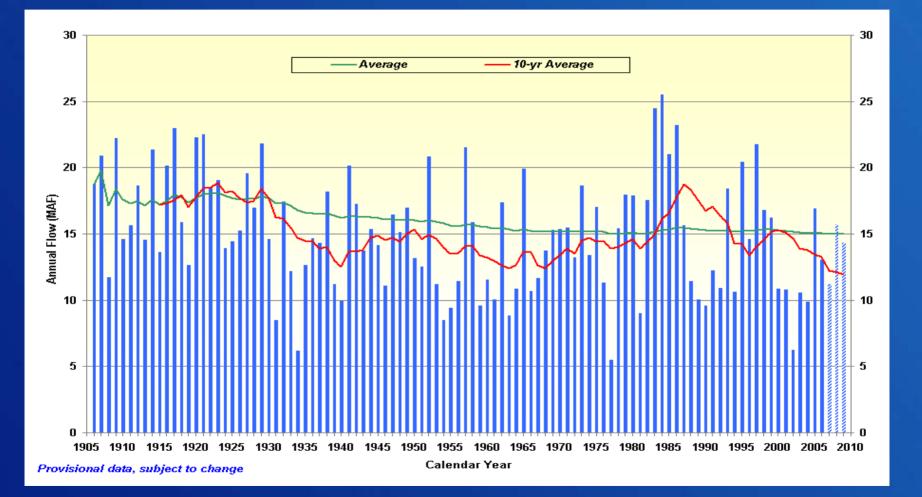
Operating Policy Lakes Mohave & Havasu Rules

RECLAMATIC

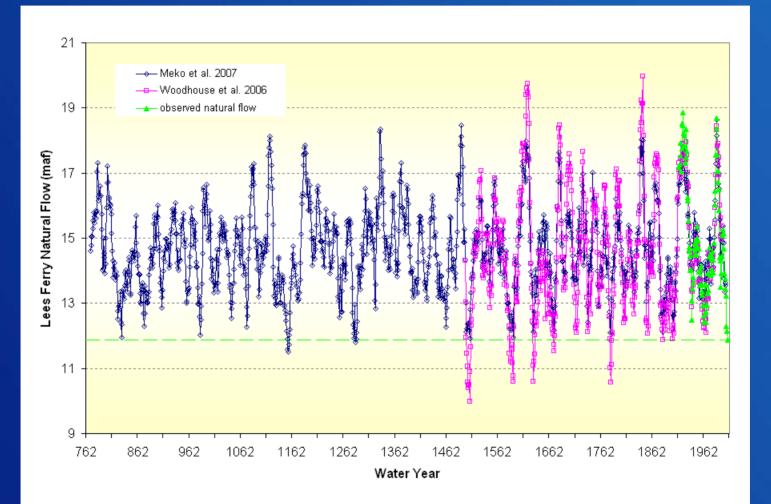
- Both follow fixed rule curves
- Target storage (or elevation) for each month is always met


Modeling Hydrologic Variability

- Quantify uncertainty due to future streamflows
- Possible future streamflows generated from historic observed flow (1906-2006) and paleo reconstructed flow (762-2005)
- Two stochastic techniques used to re-sample flows (Indexed Sequential Method and Nonparametric Paleo Conditioned)
- Probabilistic based model results


29 Natural Inflow Stations in CRSS

1	Colorado River at Glenwood Springs, CO
2	Colorado River near Cameo, CO
3	Taylor River below Taylor Park Reservoir, CO
4	Gunnison River below Bhie Mesa Reservoir, CO
5	Gunnison River at Crystal Reservoir, CO
6	Gunnison River near Grand Junction, CO
7	Dolores River near Cisco, UT
8	Colorado River near Cisco, UT
9	Green River below Fontenelle Reservoir, WY
10	Green River near Green River, WY
11	Green River near Greendale, UT
12	Yampa River near Maybell, CO
13	Little Snake River near Lily, CO
14	Duchesne River near Randlett, UT
15	White River near Watson, UT
16	Green River at Green River, UT
17	San Rafael River near Green River, UT
18	San Juan River near Archuleta, NM
19	San Juan River near Bhiff, UT
20	Colorado River at Lees Ferry, AZ
21	Paria River at Lees Ferry, AZ
22	Little Colorado River near Cameron, AZ
23	Colorado River near Grand Canyon, AZ
24	Virgin River at Littlefield, AZ
25	Colorado River below Hoover Dam, AZ-NV
26	Colorado River below Davis Dam, AZ-NV
27	Bill Williams River below Alamo Dam, AZ
28	Colorado River below Parker Dam, AZ-CA
29	Colorado River above Imperial Dam, AZ


Colorado River Basin

Annual Natural Flow Colorado River at Lees Ferry Gaging Station, Arizona *Calendar Year 1906 to 2009*

Annual Natural Flow at Lees Ferry Tree-ring Reconstruction and Observed Record 10-Year Running Mean

Indexed Sequential Method (ISM) Stochastic Technique

- Sequentially re-samples blocks of flow data
- Can only produce:
 - Observed flow magnitudes
 - Observed flow sequences
- Easily generates data for multi-site model
- Easily preserves observed data statistics

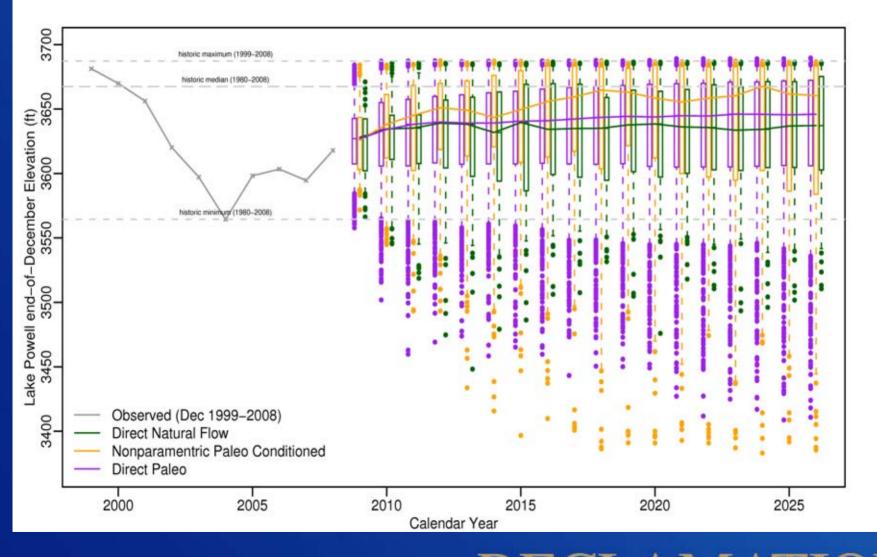
MRM Configuration - nonpar Configuration	imetric direct paleo No	Action
Comgardion	-Policy-	Input
Name: nonparametric direct paleo N		Input DMIs
Name. Horparametric direct paleo N		
	💿 Rules	🔽 Index Seq.
Mode: Concurrent	📃 🚫 Constraints	
Description Output Run Para	neters Policy Input	Concurrent Runs
_Index	Sequential	
Repeat DMI Num	er of Runs: 508	
	nitial Offset: 0 🔤	O Timesteps
	Interval: 1	 Years
	Control File: S_DIR/control/h	ydroSalt.control
Index Sequential / DMI Mode: 🥥 🤇	ombinations 🔵 Pairs	
OK Apply	Reset	Cancel

Indexed Sequential Method

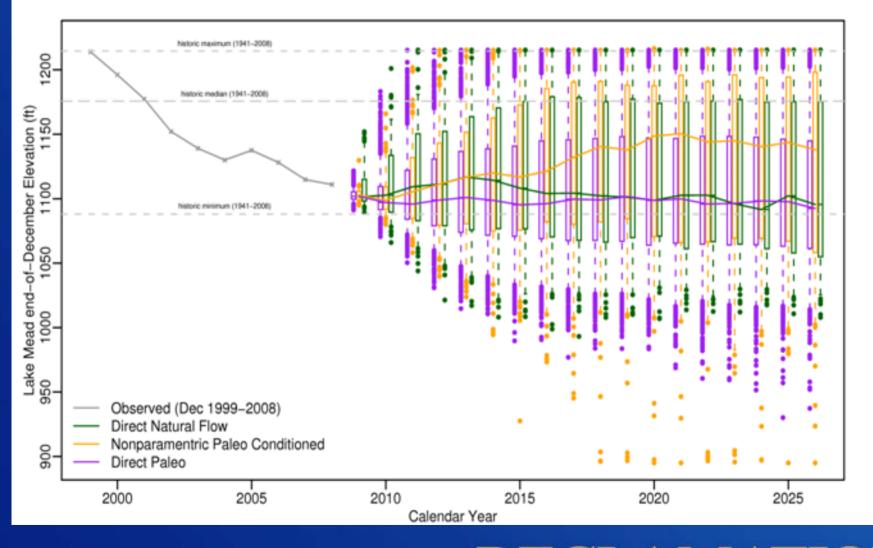
Nonparametric Paleo Conditioned (NPC) Stochastic Technique

- Blends paleo state with observed magnitude
- Can only produce:
 - Observed flow magnitudes
 - But with unique sequences
- Nonparametric disaggregation generates data for multi-site model
- Easily preserves observed data statistics

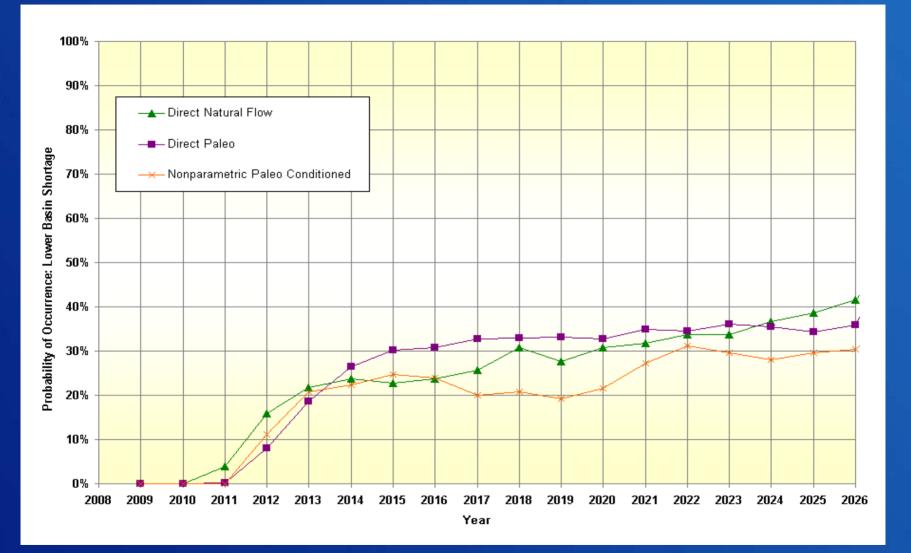
Configuration Name: nonparametric direct Mode: Concurrent	paleo No Action	Policy None Rules Constraints 	Input Input DMIs Index Seq.
Description Output R	Index Sequential Number of Runs: Initial Offset: Interval:	508	Concurrent Runs Concurrent Runs Timesteps Years droSalt.control
Index Sequential / DMI Mod	e: Combinations	Pairs Reset	Cancel

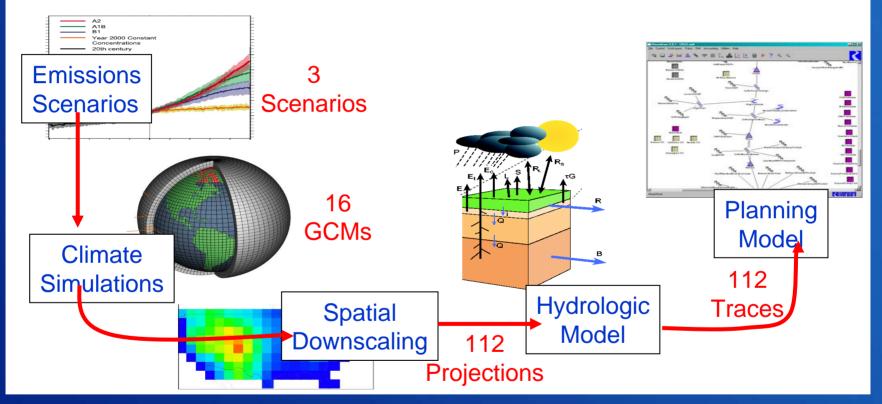

Analyzing Hydrologic Sensitivity

- 3 hydrologic inflow scenarios analyzed
 - Direct Natural Flow
 - ISM applied to observed flow record (1906-2006)
 - 101 hydrologic sequences or traces
 - Direct Paleo
 - ISM applied to paleo flow record (762-2005) (Meko et al., 2007)
 - 1244 traces
 - Nonparametric Paleo Conditioned
 - NPC applied to observed and paleo flow record (Prairie, 2006)


RECLAMATIO

• 125 traces


Results: Lake Powell Elevation


Results: Lake Mead Elevation

Results: Probability of Shortage

Assessing Projected Impacts to Colorado River System

Joint research project with AMEC Earth and Environmental and Reclamation

 \mathbf{CLAMA}

- Anticipate CRSS results by December 2009
- Anticipate peer reviewed publication in early 2010

Reclamation's Long-Term Planning Model: Colorado River Simulation System (CRSS)

Questions?