Numerical Modeling of Mud Transport, Storage, and Release on the Colorado River, Arizona
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1.5 Model results with and without eddy exchange (A=10-3 s1). Acoustic-derived mud SSC at RM30 is used as the model boundary condition. Acoustic-derived mud SSC at
RM61 is compared to the model prediction. Notice that eddy exchange slows down the mud pulse and attenuates the secondary peaks in the pulse. °
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