

GENETIC MONITORING AND BIOLOGICAL CONTROL OF RECRUITMENT IN BONYTAIL REARING PONDS

Wade Wilson, William Knight, Manual Ulibarri U.S. Fish and Wildlife Service Southwestern Native ARRC

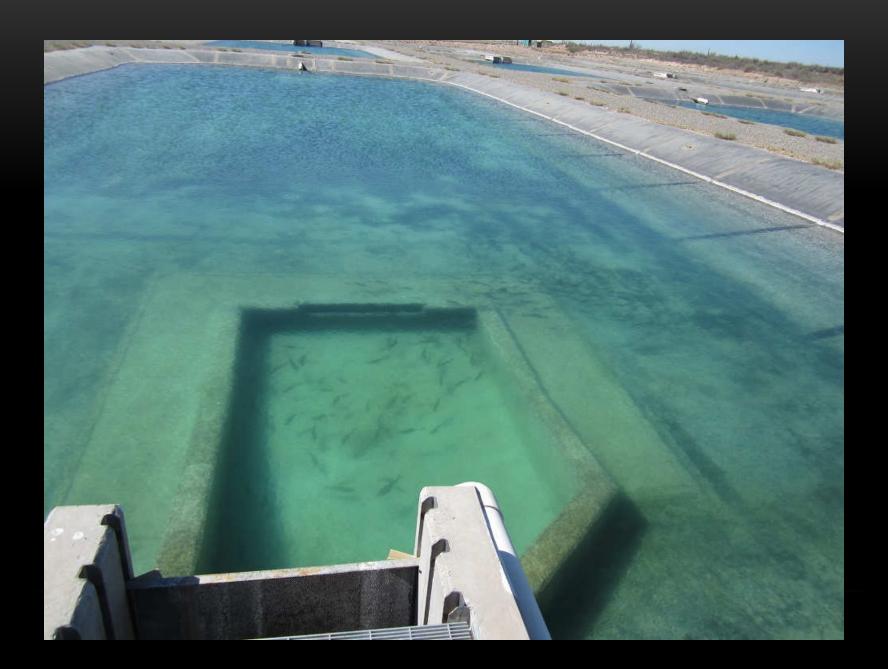
Dexter, NM


BACKGROUND

- The Southwestern Native ARRC in Dexter, NM maintains the only broodstock of *Gila elegans* (bonytail)
- Broodstock are spawned each year with larvae being reared at several facilities for growout
- The target stocking size requires a multi-year grow-out period and individuals can spawn during the second summer in grow-out ponds
- This inadvertent spawning may negatively impact growth and survival due to overcrowding in ponds
 - Poor water quality and oxygen depletions
- Genetic diversity may also be decreased as few individuals may contribute to offspring

OBJECTIVES

- To address the management implication of natural recruitment in grow-out ponds this study has two objectives:
 - Explore the use of Colorado pikeminnow as biological control and reduce recruitment in grow-out ponds
 - Use microsatellite markers to assess the genetic diversity and parentage of the offspring (recruits)


METHODS – YEAR ONE

- Experimental Fish
 - Age-4 bonytail (2009 year class, mean total length 245.9 mm)
 - Age-0 Colorado pikeminnow (2012 year class, mean total length 60.6 mm)
 - All parental bonytail received PIT tags
- Experimental Design
 - 0.04 ha lined ponds
 - Three stocking treatments (three replicates per treatment)
 - Control 100 male and 100 female bonytail, 0 Colorado pikeminnow
 - 50 CPM 100 male and 100 female bonytail, 50 Colorado pikeminnow
 - 100 CPM 100 male and 100 female bonytail, 100 Colorado pikeminnow
 - Ponds stocked in April and harvested in September (5 months)

METHODS – YEAR ONE

- Experimental Design (con't)
 - Initial lengths and weights were recorded on subsample of 20 bonytail and 10 Colorado pikeminnow
 - Water quality (temperature, DO)
 - Total number of offspring were calculated based on bulk weight
- Genetics
 - 20 microsatellite loci
 - Genotyped all adult bonytail (control ponds) & subsample of 100 offspring per pond
 - Descriptive statistics
 - Number of alleles
 - Allele frequency
 - Heterozygosity
 - Parentage Analyses examine how many individuals contributed to offspring

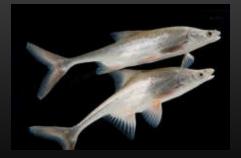
EXPERIMENTAL POND LAYOUT

RESULTS

- Water quality was within acceptable ranges for the facility
- Dissolved oxygen ranged from 6.0 to 10.0 mg/L (a.m. readings)
- Temperature ranged from 12 ° C to 30 ° C
- Adult mortality was 1.8% with no difference among treatments
- Recruitment in the control ponds (0 Colorado pikeminnow) was significantly higher than
 ponds with 50 or 100 Colorado pikeminnow

NUMBER OF RECRUITS BY POND

		Number of individuals recruited				
Treatment	Pond #	By pond	By treatment			
0 CPM	10D	3931	3752 (<u>+</u> 475.5)			
	17D	4472				
	21D	2854				
50 CPM	11D	14	24 (<u>+</u> 6.1)			
	15D	24				
	22D	35				
100 CPM	9D	62	25 (<u>+</u> 18.5)			
	16D	11				
	23D	3				


GENETIC RESULTS - PRELIMINARY

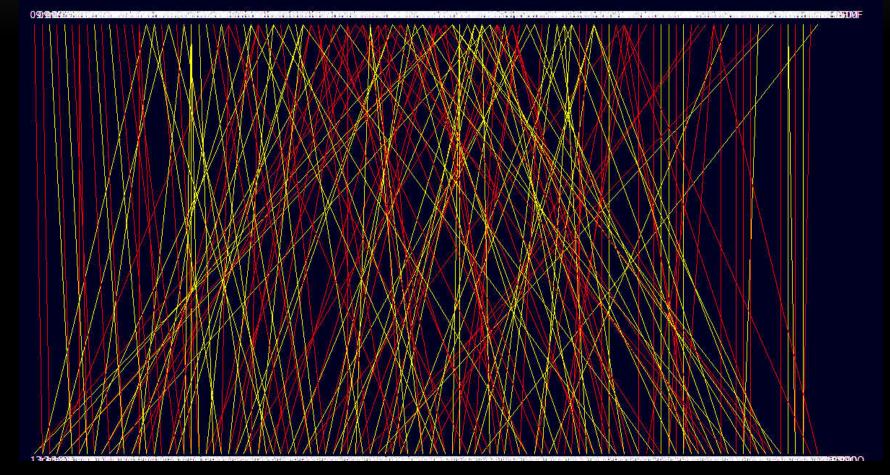
- Two of the 20 loci were out of Hardy-Weinberg Equilibrium and removed for final analyses
- The total number of alleles did not differ
 - Among ponds
 - Between males, females or offspring within pond
- Heterozygosity was also similar with low inbreeding
- Allele frequencies were similar across ponds, genders, and parent-offspring
 - Even when frequency in parents was low
- Parentage analysis showed that many of the adults in each pond contributed
 - Some individuals contributed to multiple offspring
 - When females had multiple offspring many of the males were different

GENETIC SUMMARY STATISTICS

Control Pond	Number of Alleles	Observed Heterozygosity	Expected Heterozygosity	Inbreeding (F)	
10D Females	10.632	0.776	0.812	0.043	
10D Males	10.579	0.771	0.800	0.033	
10D Offspring	10.158	0.765	0.795	0.033	
17D Females	10.368	0.758	0.812	0.064	
17D Males	10.684	0.771	0.785	0.010	
17D Offspring	10.368	0.770	0.794	0.033	
21D Females	10.368	0.768	0.807	0.052	
21D Males	10.579	0.741	0.777	0.047	
21D Offspring	10.474	0.771	0.804	0.042	

ALLELE FREQUENCY BY POND

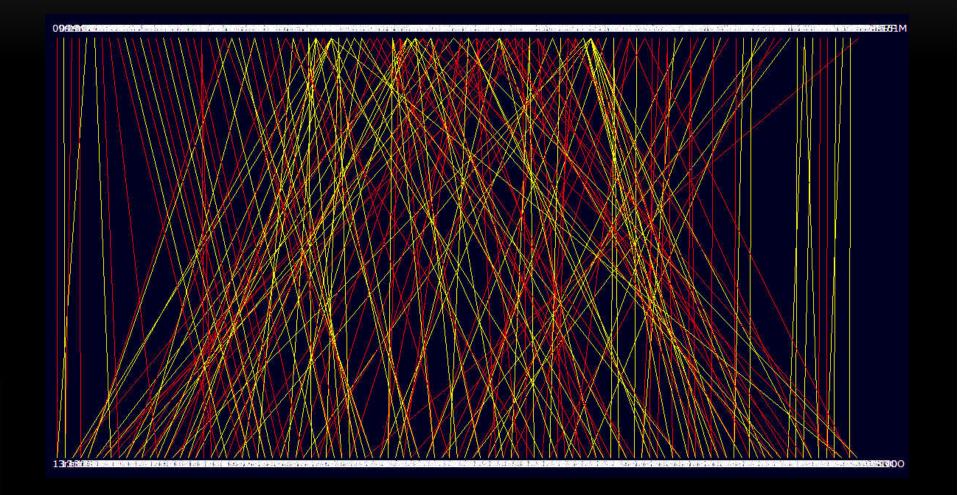
Locus	Allele	10DF	10DM	10DO	17DF	17DM	17DO	21DF	21DM	21DO
Gbig39	221	0.204	0.232	0.270	0.203	0.220	0.170	0.201	0.293	0.263
	223	0.102	0.131	0.085	0.135	0.125	0.170	0.098	0.157	0.131
	225	0.026	0.025	0.035	0.042	0.015	0.030	0.031	0.015	0.010
	231	0.020	0.010	0.025	0.010	0.005		0.005	0.020	0.005
	234	0.020	0.020	0.010	0.016	0.030	0.030	0.041	0.005	0.025
	238	0.036	0.056	0.050	0.031	0.035	0.045	0.041	0.030	0.005
	244	0.087	0.071	0.020	0.057	0.055	0.070	0.077	0.071	0.101
	250	0.031	0.015	0.015	0.016	0.020	0.015	0.010	0.015	0.025
	254	0.097	0.106	0.080	0.099	0.075	0.095	0.144	0.091	0.146
	255	0.066	0.051	0.090	0.089	0.095	0.105	0.041	0.081	0.051
	261	0.087	0.076	0.070	0.083	0.080	0.055	0.093	0.045	0.081
	267	0.133	0.152	0.160	0.177	0.190	0.160	0.170	0.116	0.116
	271	0.005								
	277	0.087	0.056	0.090	0.042	0.055	0.055	0.046	0.061	0.040

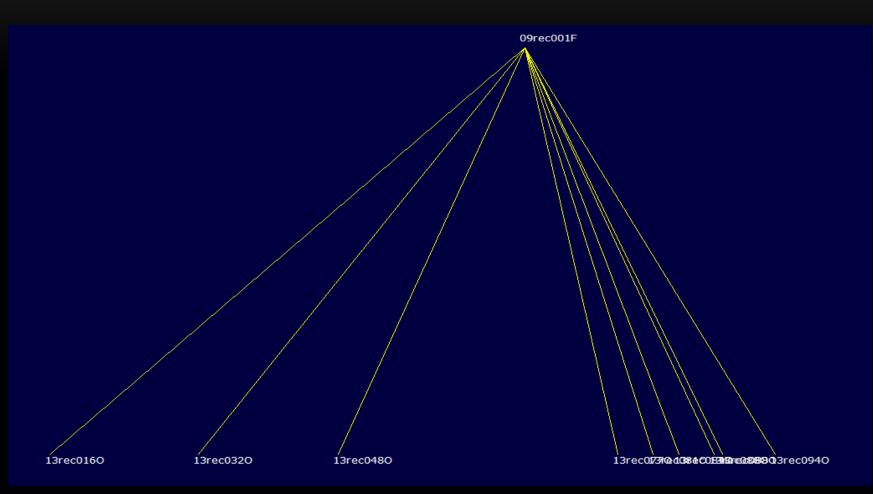

PARENT-OFFSPRING PEDIGREE – 1

PARENTS (YELLOW = FEMALE; RED = MALE)

OFFSPRING

PARENT-OFFSPRING PEDIGREE – 1


PARENTS (YELLOW = FEMALE; RED = MALE)


OFFSPRING

PARENT-OFFSPRING PEDIGREE - 2

PARENT-OFFSPRING PEDIGREE - 2

PARENT-OFFSPRING PEDIGREE - 2

CONCLUSIONS

- Colorado pikeminnow controls natural recruitment even when using 50 CPM
- Initially is seems that genetic diversity of offspring is similar to adults with little inbreeding
- Some adults contributed to multiple offspring, but offspring were often half-sibs
 - Offspring having same female parent had different male parents
 - If single large clutch then there is random egg fertilization by various males due to sperm competition
 - Some females may also produce smaller clutches allowing different males to contribute
 - Did not genotype every offspring individual, so complete picture of adult contributions is unknown
- Currently analyzing year two results: stocked in May and harvested in October

ACKNOWLEDGEMENTS

- Funding of this project was provided by the U.S. Bureau of Reclamation, LCR MSCP
- Southwestern Native ARRC staff for culture and laboratory help
- Megan Osborne (UNM) for helpful discussions

THANK YOU!

