Conditioning Hatchery-Raised Bonytail and Razorbacks to Avoid Predators

> Matt O'Neill Bill Stewart

Improving survival of stocked fish

- Native fish species may be naïve to the fact that nonnative predators are dangerous (i.e. Cox and Lima 2006)
- Adaptive forgetting (Ferrari et al. 2010)
- Prestocking conditioning suggested by many (i.e. Suboski and Templeton 1989, Ferno et al. 2011)

Improving stocked bonytail and razorback sucker survival

- Conditioning via exposure to active predators has been attempted for both razorback suckers and bonytail
- Training results in altered behavior, utilization of predator-free areas, and improved survival (Mueller and Carpenter 2006, Ward and Figiel 2013)
- Altered behavior may increase predation risk (Ward and Figiel 2013)

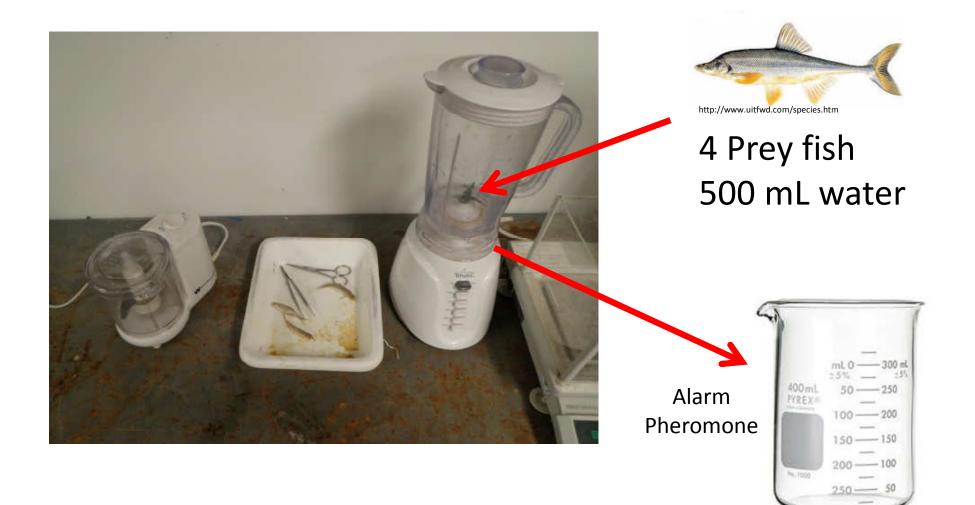

Goals

- Confirm that bonytail and razorbacks can be trained to recognize predators to improve survival
- Develop practical training techniques for large scale hatchery operations

Alarm substance

- Predator awareness is well documented in Ostariophysi, especially in cyprinids (von Frisch 1938; Pfeiffer 1963)
- Lately identified as chondroitin (Mathuru et al. 2012)
- Many controlled studies describe improved survival of trained fish for varying time periods (Frisen and Chivers 2006; Jachner and Rydez 2002)

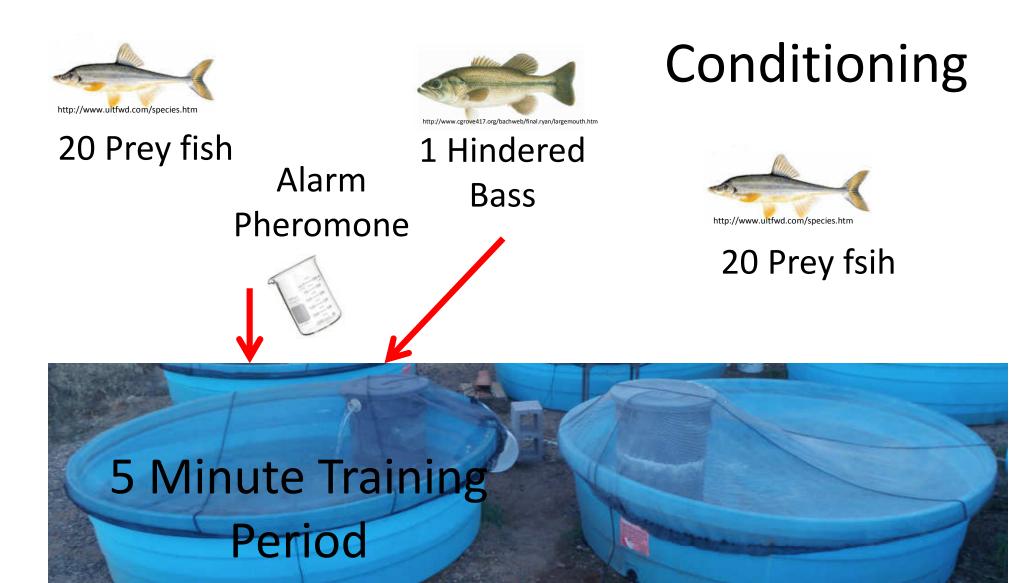
Methods


- Train fish: Expose prey fish to a **hindered** predator in conjunction with alarm substance
 - Provides both visual and chemical predator signal in conjunction with alarm pheromone
 - No predation occurs during training
- Document survival of trained fish compared to untrained fish

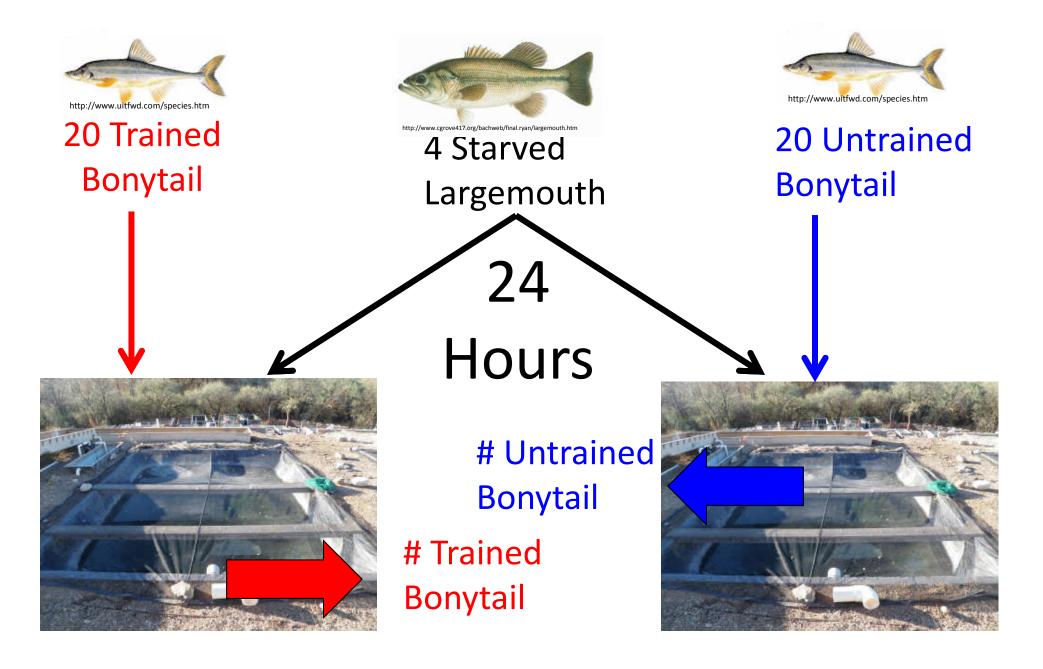
Botulinum Toxin Type A Complex

- Prevents the release of acetylcholine from neurons
- Paralyzes skeletal muscle
- Minimal travel between muscles (controlled spread)

Alarm Pheromone Collection


20 Prey fish

1 Week Acclimation

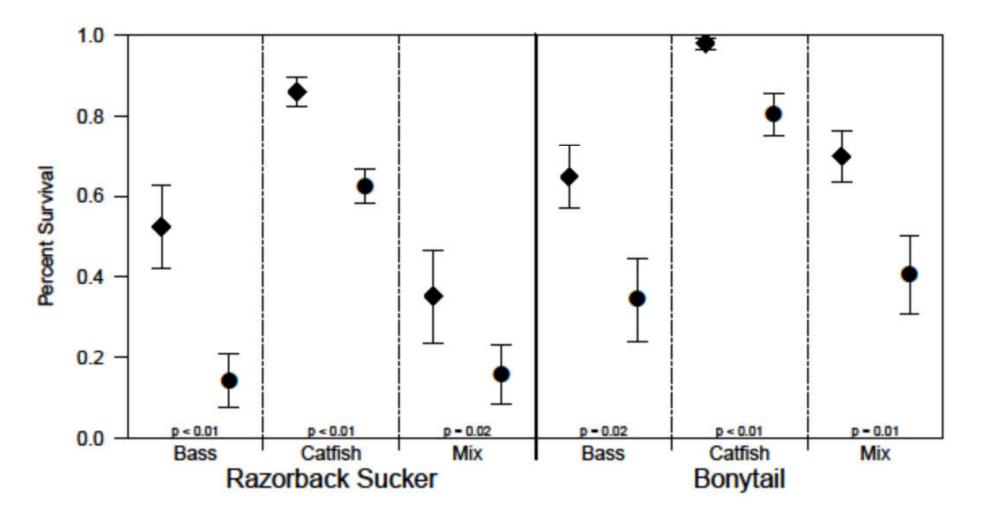

20 Prey fish

20 Conditioned fish 20 Unconditioned fish

Modified Survival Trials

Trials

Predator species	Prey species	# prey per trial	# predators per trial	# of trials
Bass	Razorback	12	2	16
Catfish	Razorback	8	2	16
Mix	Razorback	8	1 each	16
Bass	Bonytail	20	4	16
Catfish	Bonytail	12	2	16
Mix	Bonytail	12	1 each	16


Predator and Prey Size Comparisons

			Prey size					Predator siz	e		
Predator Prey species		Mean Prey Standard Length <u>- Std</u> Error			Student's t-test parameters		Mean Predator Stan <mark>dard Length ±</mark> Std Error			Student's t-test parameters	
species		Conditioned	Unconditioned	t value	df	p-value	Conditioned	Unconditioned	t value	df	p-value
Bass	Razorback	49.44±2.31	49.67 ± 2.37	-0.07	10.85	0.95	279.13±6.19	281.07±3.31	-0.28	10.57	0.79
Catfish	Razorback	54.40 ± 0.84	54.06±0.99	0.26	13.62	0.80	366.56±13.37	369.06±8.22	-0.16	11.63	0.88
Mix	Razorback	51.89 ± 0.63	52.50 ± 0.80	-0.60	13.31	0.56	347.13±9.43	317.63±6.00	2.27	7.00	0.06
Bass	Bonytail	74.23±4.38	69.43±4.23	0.79	13.98	0.44	267.47 ± 10.70	263.97±9.92	0.24	13.92	0.81
Catfish	Bonytail	67.68±1.32	66.63±0.85	0.67	11.97	0.51	360.56±9.43	363.88±12.75	-0.21	12.90	0.84
Mix	Bonytail	65.21 ± 1.13	66.71±0.80	-1.09	12.65	0.30	327.81±10.88	321.06±10.55	0.45	13.99	0.66

Predator and Prey Size Comparisons

			Prey size					Predator siz	e		
Mean Prey Standard Length Predator Prey species Error		e	Student's t-test parameters			Mean Predator Stan dard Length 1 Std Error			Student's t-test parameters		
species		Conditioned	Unconditioned	t value	df	p-value	Conditioned	Unconditioned	t value	df	p-value
Bass	Razorback	49.44±2.31	49.67 ± 2.37	-0.07	10.85	0.95	279.13±6.19	281.07 ± 3.31	-0.28	10.57	0.79
Catfish	Razorback	54.40 ± 0.84	54.06±0.99	0.26	13.62	0.80	366.56±13.37	369.06±8.22	-0.16	11.63	0.88
Mix	Razorback	51.89 ± 0.63	52.50±0.80	-0.60	13.31	0.56	347.13±9.43	317.63±6.00	2.27	7.00	0.06
Bass	Bonytail	74.23 ± 4.38	69.43 ± 4.23	0.79	13.98	0.44	267.47 ± 10.70	263.97 ± 9.92	0.24	13.92	0.81
Catfish	Bonytail	67.68±1.32	66.63 ± 0.85	0.67	11.97	0.51	360.56±9.43	363.88±12.75	-0.21	12.90	0.84
Mix	Bonytail	65.21±1.13	66.71±0.80	-1.09	12.65	0.30	327.81 ± 10.88	321.06 ± 10.55	0.45	13.99	0.66

Conditioning Results

Size effects?

		Prey size difference (post-trial SL - initial SL)							
Predator	_		rence (mm) ± Std	Student's t-test					
	Prey species	Er	ror	parameters					
species		Conditioned	Unconditioned	t value	df	p-value			
Bass	Razorback	2.39 ± 3.52	-3.54 ± 1.62	1.528	4.216	0.198			
Catfish	Razorback	0.22 ± 0.62	0.96 ± 1.86	-0.379	7.293	0.716			
Mix	Razorback	-0.20 ± 1.91	-1.45 ± 3.22	0.335	6.755	0.748			
Bass	Bonytail	0.53 ± 0.42	1.19 ± 1.46	-0.437	5.823	0.678			
Catfish	Bonytail	-0.31 ± 0.33	-0.07 ± 0.39	-0.462	11.657	0.653			
Mix	Bonytail	-0.62 ± 0.49	-2.70 ± 2.21	0.919	5.484	0.397			

Conclusions

- Confirm improved survival with minimal conditioning
- Novel technique is effective (large scale?)
- No size effect large and small fish were captured equally and conditioning helped all sizes

Future directions

- Refine conditioning program
 - Effect of multiple trainings
 - Structure
 - Age at training
 - Active predators as better trainers
 - Can training override adaptive forgetting?

Valle Vista Golf Course

Kingman, AZ

- Replicated ponds for long-term experiments
 - Refine training technique
 - Examine retention
 of learned
 behavior

Acknowledgements

- David Ward, USGS
- Andrea Finnegan, USBR
- Aaron Bunch, AZGFD
- Josh Walters, AZGFD

 Funded by the USBR Lower Colorado Multi-Species Conservation Program

Social Learning

- Naïve fish watch behavior of trained fish to learn about dangers (rather than being exposed to the danger themselves)
- May not need to train every fish
 - Social learning may allow naïve fish in the wild to learn from trained fish
 - Three-part training process may allow trained individuals to teach untrained fish
- Low "demonstrator" to "observer" improves survival of untrained fish (Vilhunen 2006)