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Abstract: Colorado Pikeminnow Ptychocheilus lucius, the Colorado River’s top native predatory
fish, was historically distributed from the Gulf of California delta to the upper reaches of
the Green, Colorado, and San Juan rivers in the Colorado River basin in the
Southwestern US. In recent decades Colorado Pikeminnow population abundance has
declined, primarily due to predation by warmwater nonnative fish and habitat
modification following dam construction. Small, reproducing populations remain in the
Green and upper Colorado rivers, but their current population trajectory is declining
and the San Juan River population is maintained primarily through stocking. As such,
establishment of an additional population could aid recovery efforts and increase the
species’ resilience and population redundancy. The Colorado River in Grand Canyon
once supported Colorado Pikeminnow, but until recently habitat suitability in this
altered reach was considered low due to a depressed thermal regime and abundant
nonnative predators. Climate change and ongoing drought has presented an
opportunity to evaluate the feasibility of native fish restoration in a system where
declining reservoir storage has led to warmer releases and re-emergence of riverine
habitat. These changes in the physical attributes of the river have occurred in concert
with a system-wide decline in nonnative predators. Conditions ten years ago were not
compatible with reintroduction feasibility in Grand Canyon; however, due to rapidly
changing conditions an expert Science Panel was convened to evaluate whether the
physical and biological attributes of this reach could now support various life stages of
Colorado Pikeminnow. Here, we report on the evaluation process and outcome from
the Science Panel, which developed a science-based recommendation to the U.S. Fish
and Wildlife Service on reintroduction feasibility. The Science Panel concluded that
current habitat attributes in Grand Canyon could satisfy some, but perhaps not all,
Colorado Pikeminnow life history requirements. This reach has the potential to support
adult and sub-adult growth, foraging, migrations, and spawning, but low juvenile
survival may limit recruitment. However, populations of other native species are
successfully reproducing and increasing in western Grand Canyon, even in areas once
considered suboptimal habitat. Should managers decide to move to the next phase of
this process, actions such as experimental stocking and monitoring, telemetry studies,
bioenergetics modeling, and laboratory-based research may provide additional
information to further evaluate a potential reintroduction effort in this rapidly changing
but highly altered system.
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Abstract 38 

Colorado Pikeminnow Ptychocheilus lucius, the Colorado River’s top native predatory fish, was 39 

historically distributed from the Gulf of California delta to the upper reaches of the Green, 40 

Colorado, and San Juan rivers in the Colorado River basin in the Southwestern US. In recent 41 

decades Colorado Pikeminnow population abundance has declined, primarily due to predation by 42 

warmwater nonnative fish and habitat modification following dam construction. Small, reproducing 43 

populations remain in the Green and upper Colorado rivers, but their current population trajectory is 44 

declining and the San Juan River population is maintained primarily through stocking. As such, 45 

establishment of an additional population could aid recovery efforts and increase the species’ 46 

resilience and population redundancy. The Colorado River in Grand Canyon once supported 47 

Colorado Pikeminnow, but until recently habitat suitability in this altered reach was considered low 48 

due to a depressed thermal regime and abundant nonnative predators. Climate change and ongoing 49 

drought has presented an opportunity to evaluate the feasibility of native fish restoration in a system 50 

where declining reservoir storage has led to warmer releases and re-emergence of riverine habitat. 51 

These changes in the physical attributes of the river have occurred in concert with a system-wide 52 

decline in nonnative predators. Conditions ten years ago were not compatible with reintroduction 53 

feasibility in Grand Canyon; however, due to rapidly changing conditions an expert Science Panel 54 

was convened to evaluate whether the physical and biological attributes of this reach could now 55 

support various life stages of Colorado Pikeminnow. Here, we report on the evaluation process and 56 

outcome from the Science Panel, which developed a science-based recommendation to the U.S. 57 

Fish and Wildlife Service on reintroduction feasibility. The Science Panel concluded that current 58 

habitat attributes in Grand Canyon could satisfy some, but perhaps not all, Colorado Pikeminnow 59 

life history requirements. This reach has the potential to support adult and sub-adult growth, 60 

foraging, migrations, and spawning, but low juvenile survival may limit recruitment. However, 61 
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populations of other native species are successfully reproducing and increasing in western Grand 62 

Canyon, even in areas once considered suboptimal habitat. Should managers decide to move to the 63 

next phase of this process, actions such as experimental stocking and monitoring, telemetry studies, 64 

bioenergetics modeling, and laboratory-based research may provide additional information to 65 

further evaluate a potential reintroduction effort in this rapidly changing but highly altered system.  66 

 67 

Keywords: climate change; Colorado Pikeminnow; drought; extirpated; habitat suitability; recovery 68 

viability; redundancy; restoration 69 
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Introduction 86 

Colorado Pikeminnow Ptychocheilus lucius (formerly ‘Colorado Squawfish’) evolved over millions 87 

of years in rivers of the Colorado River basin (Houston et al. 2010). In their undammed state, these 88 

rivers were warm for much of the year, silt-laden, and exhibited high seasonal and interannual 89 

fluctuations in turbidity and flow volume (Miller 1961). Historically as the top predator in the 90 

system, Colorado Pikeminnow reached up to 1.8 m and 45 kg, although most captured today rarely 91 

exceed 10 kg (Miller 1961; Snyder et al. 2016). Prior to dam construction they migrated up to 92 

several hundred kilometers to spawn (Mueller and Marsh 2002), with the species’ range extending 93 

from the Gulf of California delta (hereafter, ‘delta’) into rivers in Mexico, Arizona, California, 94 

Nevada, New Mexico, Colorado, Utah, and Wyoming (Figure 1). The species also exhibited 95 

plasticity in its ability to occupy non-traditional habitats, such as ancient Lake Cahuilla (same 96 

location as present-day Salton Sea) and Prospect Lake, which was formed when lava flows dammed 97 

the Colorado River’s flow in Grand Canyon (Gobalet et al. 2005). 98 

In the southern portion of their range in the Colorado and Gila rivers and in the delta (Figure 99 

1), Colorado Pikeminnow were noted as common to abundant and the most highly prized of native 100 

fishes available for capture (Gilbert and Scofield 1898; Mueller and Marsh 2002). To the north, they 101 

were present and relatively common in the upper Colorado, Green, and San Juan rivers and in major 102 

tributaries such as the Animas, Gunnison, White, and Yampa rivers (Jordan 1889; Koster 1960; 103 

Quartarone and Young 1995). The construction of Laguna Dam near the Mexican border in 1909 104 

followed by Hoover Dam in 1935 restricted migratory movement from the highly productive delta 105 

into the upper portions of the system (Mueller and Marsh 2002), with populations in the upper basin 106 

declining after the 1920s and 1930s following the construction of dams and with implementation of 107 

large rotenone projects (Quartarone and Young 1995). Declines in abundance and the species range 108 
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contraction across the basin led to its inclusion in the 1967 List of Endangered Species (FR 1967), 109 

and formal listing as ‘endangered’ under the US Endangered Species Act (ESA 1973, as amended). 110 

 111 

Current species status 112 

Colorado Pikeminnow historically occupied most of the major river segments in the Colorado River 113 

Basin. This basin has been divided into six analysis units as delineated by geographic subbasin, with 114 

only three subbasins currently supporting Colorado Pikeminnow populations (shaded blue, Figure 115 

1; USFWS 2020b). The analysis units were defined based on the location of dams and were further 116 

refined to the subbasin level where demographic processes are likely independent and population 117 

size is estimated (USFWS 2020a). Wild, self-sustaining populations remain in the Green and upper 118 

Colorado rivers, with a population persisting in the San Juan River through an ongoing stocking 119 

program. At the present time, the Green River adult population (age 7+, ≥ 450 mm TL) is the largest 120 

and includes fish from the Green, Yampa, and White rivers (Figure 1). From 2001-2018 abundance 121 

in the Green River declined from 3,640 to 885 (Table S1). This was likely due to declines in 122 

recruitment linked to poor survival of age-0 fish after 2000 combined with nonnative fish predation 123 

(Bestgen et al. 2018). The upper Colorado River population (upstream from the Green River 124 

confluence) is smaller than the Green River population, numbering in the few hundreds (Table S1; 125 

Figure 1). The frequency of strong year classes has declined to the point that recruitment is 126 

inadequate to replace adult mortality over the long term.  127 

The San Juan River population was considered functionally extirpated in the early 2000s 128 

(USFWS 2020b), but extensive stocking efforts of age-0 fish starting in 1996 increased the 129 

abundance of juveniles in the river. Low survival has rendered adult population estimates 130 

challenging (estimated to be < 140 individuals; Table S1; Ryden 2000; Diver and Wilson 2018). 131 

Spawning by stocked adults has been documented in the San Juan River since 2003, with small 132 
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numbers of mesolarvae captured in backwaters, embayments, and zero- or low-velocity areas 133 

(Farrington et al. 2016). Stocking of juvenile fish and the inability to mark small fish has led to 134 

uncertainty about recruitment to larger size classes and the provenance of larger fish that are 135 

captured (i.e., some could be the result of wild-spawned fish). 136 

The Verde and Salt rivers in the Gila River basin have been stocked experimentally, but no 137 

young have been documented and recruitment is presumed non-existent (gray shading, Figure 1; 138 

USFWS 2020b). Colorado Pikeminnow are presumed extirpated from the Colorado River in Grand 139 

Canyon and in the Lower Colorado River mainstem since the last capture was recorded near Havasu 140 

Creek in 1978 (ASU Ichthyology Collection, Catalog #: ASUFIC007087). As such, fish recovery 141 

efforts are focused on the three remaining populations through the work of the Upper Colorado 142 

River Endangered Fish Recovery and the San Juan River Basin Recovery Implementation 143 

programs.  144 

Colorado Pikeminnow recovery goals focus on achieving self-sustaining populations so the 145 

species can be considered for downlisting (e.g., from endangered to threatened) or delisting (e.g., 146 

from threatened to not warranted) under the ESA, while also ensuring water development proceeds 147 

in compliance with applicable regulations, laws, and interstate compacts (USFWS 2002, 2020b). 148 

Colorado Pikeminnow Recovery Goals (2002) identified downlisting and delisting criteria using 5-7 149 

years of adult population abundance estimates for the Green, upper Colorado, and San Juan river 150 

populations to determine whether recovery criteria have been met (USFWS 2002); these goals are 151 

currently in revision. While the Green and upper Colorado river populations have met or exceeded 152 

adult abundance goals in past years, adult populations have declined below target demographic 153 

criteria. With low adult abundances and declines in the two remnant wild populations (Green and 154 

upper Colorado river), the U.S. Fish and Wildlife Service recommended no change in its status as 155 

an ‘endangered species’ in its recent ESA five-year status review (a periodic review to ensure the 156 
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listing remains accurate). This review identified several important management actions, including a 157 

recommendation to “investigate potential conservation actions that might be implemented in the 158 

lower basin” (USFWS 2020a). An additional population could aid recovery efforts and increase the 159 

species resiliency and redundancy should unforeseen circumstances or further population declines 160 

in the upper basin compromise the species’ continued existence. With rapidly warming reservoir 161 

releases and re-emergence of riverine habitat due to climate change, the U.S. Fish and Wildlife 162 

Service commenced the evaluation process described herein to assess the potential for whether the 163 

Colorado River in Grand Canyon could again support a viable population of Colorado Pikeminnow. 164 

 165 

Reintroduction feasibility in Grand Canyon 166 

The river segment under consideration here commences at Glen Canyon Dam, flows 25 km through 167 

Glen Canyon National Recreational Area to Lees Ferry, and then flows approximately 481 km 168 

through Grand Canyon National Park to the inflow of Lake Mead (Figure 2), although this distance 169 

can vary depending on the water elevation of Lake Mead. This river segment has been highly 170 

impacted by the two largest dams and their associated reservoirs in the US, Glen Canyon and 171 

Hoover dams, which form Lake Powell and Lake Mead, respectively. These dams provide water 172 

storage and flood control while also generating hydropower. The quality and quantity of water 173 

released from Lake Powell influences the physical and biological aspects of the downstream river in 174 

Grand Canyon, while the elevations of Lake Mead determine the extent of free-flowing river 175 

available for fish in warmer parts of the western Grand Canyon (Figure 2). 176 

Colorado Pikeminnow historically inhabited the Colorado River in and around Grand Canyon, 177 

as evidenced by archaeological deposits in Stanton’s and Salt Can caves and in Native American 178 

midden piles at the Homolovi Ruins and Catclaw Cave (Euler 1978, 1984). Colorado Pikeminnow 179 

were also used as a food source in Grand Canyon by early explorers and river runners, including by 180 
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the Stanton Party in 1889, where it was reported they consumed “Colorado River Salmon” at 181 

Christmas dinner (Measeles 1981; Smith and Crampton 1987; Minckley 1991; Mueller and Marsh 182 

2002). Reductions in Colorado Pikeminnow and other native fish populations were likely due to 183 

river fragmentation from dams constructed in the lower basin (Mueller and Marsh 2002), combined 184 

with transformation of the physical and biological attributes of the river including a depressed 185 

thermal regime (e.g., Voichick and Wright 2007) and reductions in turbidity and fine sediment load 186 

relative to pre-dam conditions (e.g., Topping et al. 2000). Nonnative fish including Channel Catfish 187 

Ictalurus punctatus and Common Carp Cyprinus carpio were present prior to dam construction and 188 

may have exerted additional population pressure on native fish through piscivory and competition 189 

(Holden and Stalnaker 1975). 190 

In the post-dam era, the Colorado River in Grand Canyon was considered suboptimal habitat 191 

for native fishes. Habitat suitability for native fishes has increased in the last 15 years, which has 192 

primarily been driven by warmer water releases from declining Lake Powell elevations and re-193 

emergence of 100+ km of relatively warm river in western Grand Canyon due to the contraction of 194 

Lake Mead from ongoing drought. Native species such as Flannelmouth Sucker Catostomus 195 

latipinnis and Humpback Chub Gila cypha have expanded into western Grand Canyon and 196 

increased dramatically since 2015 (Van Haverbeke et al. 2017; Rogowski et al. 2018; Kegerries et 197 

al. 2020; Van Haverbeke et al. 2020), and Razorback Sucker Xyrauchen texanus has also been 198 

found in western Grand Canyon and at the inflow of Lake Mead (Albrecht et al. 2010; Kegerries et 199 

al. 2017; Kegerries et al. 2020). In addition, Pearce Ferry Rapid emerged as Lake Mead elevation 200 

declined, which may be providing a barrier to nonnative fish movement from Lake Mead into 201 

western Grand Canyon (Kegerries et al. 2020), further contributing to native fish recovery.  202 

Because of rapidly changing riverine conditions and the resurgence of native fish in western 203 

Grand Canyon, combined with declines in upper basin populations, there is interest among federal, 204 
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state, and tribal resource management agencies to assess the feasibility of reestablishing Colorado 205 

Pikeminnow in Grand Canyon. A potential reintroduction effort is supported by the Comprehensive 206 

Fisheries Management Plan for native and nonnative fishes in Grand Canyon, which was developed 207 

by Grand Canyon National Park and Glen Canyon National Recreation Area, in consultation with 208 

the Arizona Game and Fish Department (GCNP 2013). One of four main goals in the plan includes 209 

restoring self-sustaining populations of extirpated species including Colorado Pikeminnow, if 210 

feasibility studies determine it can be reasonably restored without impacting other listed species 211 

(GCNP 2013).  212 

Reintroduction feasibility process. The Colorado Pikeminnow reintroduction feasibility study 213 

was facilitated by the U.S. Geological Survey as the science provider and guided by a Steering 214 

Committee comprised of natural resource and land managers who have authority over wildlife or 215 

water resources in the Colorado River in Grand Canyon or on adjacent lands. The Steering 216 

Committee included representatives from the Hualapai Tribe, Navajo Nation, Arizona Game and 217 

Fish Department, Nevada Department of Wildlife, U.S. National Park Service, U.S. Bureau of 218 

Reclamation, and the U.S. Fish and Wildlife Service (Table 1). The Steering Committee identified a 219 

group of university and federal scientists with expertise in Colorado Pikeminnow ecology to serve 220 

on a Science Panel that would evaluate habitat suitability in Grand Canyon and provide a formal 221 

recommendation on whether experimentation to assess reintroduction feasibility is warranted. 222 

Participants and their respective roles in this process are defined in Table 1. 223 

Science Panelists and members of the Steering Committee reviewed summaries of Colorado 224 

Pikeminnow population status and life history requirements, and information on the physical and 225 

biological attributes of Grand Canyon prior to and during a 1-day workshop held in Flagstaff, 226 

Arizona on September 11, 2019. Panelists completed a structured Life History Survey (see Text S1) 227 

prior to the workshop to reach consensus on life stage requirements related to flow, temperature, 228 
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nursery habitat, and prey using information from remaining populations in the upper basin. 229 

Modifications to this table were made during the workshop based on collective discussion (Table 2). 230 

Science Panelists then visually assessed the Colorado River during a 4-day river trip in western 231 

Grand Canyon in the Diamond Creek (rkm 389) to Pearce Ferry (rkm 479) reach from September 232 

12-15, 2019. Following discussions in the field, panelists provided feedback on environmental and 233 

biological factors that may help or hinder the development of a self-sustaining population, 234 

developed a list of research questions to inform reestablishing a population in Grand Canyon, and 235 

provided U.S. Fish and Wildlife Service with a formal recommendation by consensus on whether 236 

experimentation to assess reintroduction feasibility (i.e., the next phase) was warranted.  237 

This study provides the official report of the Colorado Pikeminnow Science Panel, but it is 238 

important to note this study does not represent an action document. Rather, the purpose of this study 239 

is to provide a summary of the science, and where the science is unclear or incomplete, fill in gaps 240 

via elicitation of expert opinion to provide managers with information to base future reintroduction 241 

decisions. In the following sections we synthesize literature on the five environmental and 242 

biological factors most likely to influence species viability (USFWS 2020b), discuss the extent to 243 

which the Grand Canyon could support the life history requirements of Colorado Pikeminnow at 244 

various life stages (egg, embryo, larvae, juvenile, sub-adult, adult), and provide the Science Panel 245 

assessment of whether they think the Colorado River in Grand Canyon could support a population 246 

of Colorado Pikeminnow given rapidly changing conditions in this part of the watershed. We focus 247 

our discussion on aspects that are essential for Colorado Pikeminnow to complete each life stage vs. 248 

those that are preferred or non-essential per the information in the Life History Survey (Table 2), so 249 

as to focus on attributes that could lead to potential life history bottlenecks in Grand Canyon. 250 

 251 

Factors that Influence Species Viability 252 
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The Species Status Assessment for Colorado Pikeminnow (USFWS 2020b) included five 253 

environmental and biological factors most likely to influence species viability: 1) peak flows, which 254 

maintain channel complexity, form backwater nursery habitats, and clean cobble bars to provide 255 

suitable spawning and rearing habitat and promote invertebrate production; 2) base flows, which 256 

facilitate hatching success, transport drifting larvae, maintain zero to low-velocity backwater 257 

nursery habitat, and provide connectivity between spawning and foraging areas for sub-adults and 258 

adults; 3) warm water temperature, which provides a thermal regime to trigger spawning and 259 

support egg hatching, larval development, and growth; 4) complex, redundant, low-velocity areas 260 

that support spawning, rearing, and foraging; and 5) an abundant forage base that exhibits low 261 

predation and competition from nonnative species (USFWS 2020b). The suitability of these habitat 262 

characteristics are associated with stable or increasing fish populations that may be more resistant to 263 

environmental disturbance. Resilient populations exhibit consistent reproduction, high survival 264 

rates, and recruitment rates that offset adult mortality leading to population growth. At the present 265 

time there are no subbasins containing the perfect combination of environmental and biological 266 

factors, which has contributed to the species’ decline.  267 

 268 

Peak flows 269 

Colorado Pikeminnow evolved in a highly variable environment and exhibit life history 270 

characteristics that are intrinsically tied to the hydrologic cycle of winter precipitation and spring to 271 

early summer snowmelt originating from the Rocky Mountains in western North America. This 272 

species uses environmental cues, including declining spring flows and increasing water temperature, 273 

to trigger spawning migrations to specific areas and commence reproduction in late spring to early 274 

summer (Vanicek and Kramer 1969; Nesler et al. 1988; Tyus 1990; Bestgen and Hill 2016a). Long-275 

distance spawning migrations routinely occur in the Green River, whereas in the upper Colorado 276 
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and San Juan rivers spawning movements are generally more localized (McAda and Kaeding 1991; 277 

Ryden and Ahlm 1996). Peak flows provide suitable spawning substrate by scouring cobble and 278 

gravel of fine sediment, which facilitates egg attachment and development (Table 2). Deep 279 

interstitial spaces ensure proper aeration and oxygenation of embryos that increase the likelihood of 280 

successful incubation and hatching (Tyus and McAda 1984; McAda and Kaeding 1991; Bestgen 281 

and Hill 2016a). The removal of fine sediment also promotes invertebrate production, thereby 282 

providing better foraging conditions for larval and juvenile fish (Osmundson et al. 2002). 283 

Peak flows are also important in developing and maintaining low-velocity and backwater 284 

environments that larval fish drift into and use after hatching and swim up (Table 2; Bestgen and 285 

Hill 2016a). These low-velocity, warmwater refuges provide food to support juvenile growth and 286 

development (Bestgen and Hill 2016a). Peak flows maintain channel complexity by preventing 287 

vegetation encroachment, channel narrowing, and accretion of channel substrate deposits along the 288 

riverbank (USFWS 2020b). These flows also reconnect main channels to the floodplain, which 289 

benefit adult fish before spawning because floodplains are warm and contain abundant prey that 290 

enhance the gonadal maturation process (Muth et al. 2000).  291 

Peak flows in Grand Canyon. Prior to the construction of Glen Canyon Dam, peak flows 292 

occurred in early June (~Day 150), ranged from ~700-6,200 m3s-1, and were several months in 293 

duration (Schmidt et al. 2001). Flows in Grand Canyon are now primarily driven by Glen Canyon 294 

Dam operations as prescribed in the Glen Canyon Dam Long-Term Experimental and Management 295 

Plan Environmental Impact Statement (LTEMP EIS; USDOI 2016a), its associated Record of 296 

Decision (ROD; USDOI 2016b), and the 2007 Interim Guidelines for water shortages (USDOI 297 

2007). Inclusion of peak flows similar to pre-dam conditions were considered but not chosen as the 298 

preferred alternative in the LTEMP EIS and ROD; however, sediment-triggered experimental flows 299 
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such as spring High Flow Experiments (HFEs) and flows within powerplant capacity (up to 708 300 

m3s-1) were included and could substitute as short-term disturbance events.  301 

The primary objective of spring HFEs is to mobilize sediment from the bed for deposition on 302 

banks to rebuild sandbars or protect the sediment supply from equalization flows (Grams et al. 303 

2010; Melis 2011), but they also may form backwaters that can be used by larval and juvenile fish 304 

(Dodrill et al. 2015). Sediment-triggered spring HFEs can release up to 1,274 m3s-1 of water in 305 

March or April with longevity ≤96 hours (4 days), whereas proactive spring HFEs can release up to 306 

1,274 m3s-1 of water in April, May, or June with longevity up to 24 hours (USDOI 2016b, 2016a). 307 

Two sediment-triggered spring HFEs were tested in spring 1996 and 2008 (Figure 3), but proactive 308 

spring HFEs have not been implemented. Given current operational constraints associated with low 309 

reservoir elevations, future spring HFEs may be limited. In addition to sediment-triggered spring 310 

HFEs, flows up to 708 m3s-1 within powerplant capacity can be released from Glen Canyon Dam. 311 

Such flows were released as part of a Spring Disturbance Flow in March 2021, which released low 312 

steady flows for five days (116 m3s-1) then higher flows for approximately 82 hours (~3.5 days; 572 313 

m3s-1). Research is currently underway to evaluate the effects of this flow on the aquatic food base, 314 

primary production, nutrient cycling, fish populations, and channel geomorphology, among others.  315 

Suitability of peak flows to support Colorado Pikeminnow in Grand Canyon. Spring HFEs 316 

may function as short-duration peak flows since they are designed to move fine-grained sediment 317 

off the bed and onto sandbars or to higher elevations (Schmidt et al. 2001) in the months just prior 318 

to presumed Colorado Pikeminnow spawning. As such, spring HFEs could improve spawning 319 

substrate and stimulate invertebrate production, but it is not clear whether they could reduce 320 

substrate embeddedness and create well-oxygenated cobble and gravel for egg development. Spring 321 

disturbance flows, such as one that occurred within powerplant capacity in March 2021, have the 322 

potential to scour the substrate and remove fine sediment from the bed. However, it is unclear the 323 
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extent to which such relatively low magnitude flows will affect sediment resources in Grand 324 

Canyon. Given the magnitude of this flow relative to pre-dam floods that sometimes exceeded 325 

>6,200 m3s-1 (Schmidt et al. 2001), it is likely fine sediment on top of and along the margins of 326 

cobble bars will be scoured, but a much larger flow (e.g., a spring HFE; Grams et al. 2010) would 327 

be needed to winnow out fine sediment that would provide deep interstices most needed for 328 

successful egg protection and incubation. 329 

Spring HFEs or disturbance flows may cue spawning migrations by adult Pikeminnow, but 330 

these migrations may ultimately be more dependent on warming water temperatures and increasing 331 

photoperiod than a flow trigger (Fraser et al. 2019). During the spring 1996 HFE, flows had a 332 

minimal effect on the abundance, distribution, and movement of native fishes such as Flannelmouth 333 

Sucker, Humpback Chub, Bluehead Sucker Catostomus discobolus, and Speckled Dace Rhinichthys 334 

osculus around the Little Colorado River (Valdez et al. 2001). Native Flannelmouth and Bluehead 335 

Sucker and Humpback Chub undertake spawning migrations by moving into tributaries such as the 336 

Paria and Little Colorado rivers in late February and early March (Valdez et al. 2001), but they may 337 

be following temperature and not flow cues. Humpback Chub spawn in Havasu Creek, which lacks 338 

a snowmelt runoff, and move into Bright Angel Creek to spawn after spring runoff in May or June 339 

(B. Healy, pers. comm). Nonetheless, spring flooding has been found to be an important 340 

environmental cue that shapes native fish abundance in Bright Angel Creek, along with temperature 341 

(Healy et al. 2020), so a combined effect of spring flooding and more favorable thermal conditions 342 

may ultimately stimulate native fish spawning. Since Colorado Pikeminnow spawns in hatchery 343 

settings in the absence of a flow trigger (Hamman 1981), it is possible another cue like water 344 

temperature could trigger spawning if peak flows were muted or absent relative to a traditional 345 

spring peak. 346 

 347 

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023



 

16 

 

Base flows 348 

Base flows are an important environmental factor because they provide a consistent water supply to 349 

support egg development and hatching while also transporting drifting larvae into downstream 350 

nursery habitats, where fish grow and remain for the first few years (Table 2). In the upper basin, 351 

spawning occurs from June to August and larvae emerge from the substrate 4-7 days post-hatch 352 

measuring ~7-9 mm TL (Snyder et al. 2016). This occurs on the declining limb of the spring 353 

hydrograph where flows move larvae downstream into nursery areas where they develop. In the 354 

Green River the majority of larvae captured in drift nets are 6-8 days old and 8-10 mm TL, 355 

indicating relatively close proximity to a spawning ground (Bestgen et al. 2006).  356 

Stable base flows provide connectivity between foraging and spawning areas for sub-adult and 357 

adult fish but also inundate backwaters and low-velocity nursery habitats without reconnecting them 358 

with the main channel (Table 2). Moderate summer base flows in the middle Green (48-85 m3s-1) 359 

and lower Green (48-108 m3s-1) rivers are associated with high survival and abundance of age-0 360 

fish, whereas few larvae and juveniles are produced when base flows are lower or higher (Bestgen 361 

and Hill 2016a). This is likely because moderate flow levels optimize the number, extent, and 362 

stabilize temperature of backwater areas, providing resources to increase survival (Bestgen and Hill 363 

2016a). Overwinter survival is also linked to the magnitude of daily winter flows, with high survival 364 

associated with low flows and low survival associated with high flows (Haines et al. 1998). This 365 

effect is likely due to high flows inundating backwaters that eliminate their value as nurseries, 366 

flushing fish downstream during a time that is already energetically costly while also subjecting 367 

them to injury and predation (Haines et al. 1998). 368 

Operational base flows in Grand Canyon. Base flows in Grand Canyon in the pre-dam period 369 

typically ranged from 100-200 m3s-1 during late summer, autumn, and winter (Figure 3). Under 370 

current operating rules and regulations, dam releases are restricted to a minimum of 227 m3s-1 371 
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during the day and 142 m3s-1 at night, with maximum releases of 708 m3s-1 within powerplant 372 

capacity that may be exceeded during HFEs. The daily range in flows is restricted to 227 m3s-1, 373 

which is lower than the post-dam period that exhibited high levels of hydropeaking (Figure 3). The 374 

daily stage change in Lees Ferry (Glen Canyon) is approximately 0.5 m and produces a high and 375 

low-water mark that attenuates downstream, resulting in backwaters that are less persistent in the 376 

Grand Canyon (e.g., Grams et al. 2010) than in the Green, upper Colorado, and San Juan rivers. As 377 

such, these variable flows do not help to maintain stable nurseries in summer. However, operational 378 

base flows in Grand Canyon would provide connectivity between spawning and foraging areas for 379 

adults and these flows would provide high levels of substrate oxygenation, should fine sediment be 380 

adequately scoured from cobble and gravel. 381 

Stable operational base flows to benefit endangered species were not included as a 382 

management objective in the LTEMP EIS and ROD (USDOI 2016b, 2016a). However, there are 383 

two stable flow experiments designed to benefit Humpback Chub and other native fish species that 384 

may also benefit Colorado Pikeminnow, which include: 1) low summer flows; and 2) 385 

macroinvertebrate production flows (i.e., ‘bug flows’). The objective of low summer flows is to 386 

increase Humpback Chub growth and recruitment during years of coolwater releases from Glen 387 

Canyon Dam by increasing water temperature to ≥14°C at the Little Colorado River confluence. 388 

Low summer flows include releases of 227 m3s-1 with little daily fluctuation (28 m3s-1), spanning 389 

July-September. A low summer steady flow experiment occurred in 2000, but low summer flows 390 

have not been implemented under the LTEMP EIS and ROD because temperatures have exceeded 391 

14°C at the Little Colorado River confluence since then (2000-2022). 392 

Operational base flows in Grand Canyon follow a load-following pattern, with higher flows 393 

released twice a day to generate electricity during hours of peak demand (e.g., in morning and at 394 

night). Hourly changes in discharge can be substantial and produce kinematic waves that propagate 395 
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downstream, creating an extensive intertidal zone along shorelines for more than 400 km (Wiele 396 

and Smith 1996) that affects invertebrate production (Kennedy et al. 2016). Macroinvertebrate 397 

Production Flows (i.e., ‘Bug flows’) were developed as an experiment to test the hypothesis that 398 

keeping flows low and steady at the weekly minimum on weekends will benefit aquatic invertebrate 399 

production by ‘giving bugs the weekend off’ from flow fluctuations due to hydropower generation. 400 

This is because high chironomid counts occur in areas where minimum flows occur at dusk, while 401 

low counts occur in areas where maximum flows occur at dusk. Since aquatic insects tend to lay 402 

eggs along the water’s edge at dusk, eggs laid near the low water mark are presumably submerged 403 

and have a higher likelihood of survival during the day, whereas eggs laid at the high water mark 404 

are desiccated when flows drop (Kennedy et al. 2016). Bug flows were implemented from May-405 

August in 2018, 2019, and 2020, with results generally positive and indicative of increased aquatic 406 

invertebrate production and higher levels of gross primary production (T. Kennedy, USGS, unpub. 407 

data; Deemer et al. 2022). If implemented on a long-term basis these flows could provide stability 408 

in backwaters during the weekends and potentially improve the food base.  409 

Suitability of operational base flows to support Colorado Pikeminnow in Grand Canyon. 410 

Stage change differs across the canyon and is primarily driven by channel width and other local 411 

geomorphological features. The area of gravel and cobble bars that are exposed when flows drop to 412 

below 227 m3s-1 is higher in western Grand Canyon than in the middle canyon (Kaplinski et al. 413 

2020, and M. Kaplinski, USGS, unpub. data). Releases are restricted to a minimum of 227 m3s-1 414 

during the day and 142 m3s-1 at night, however, minimum daily flows released from Glen Canyon 415 

Dam are typically at or near 227 m3s-1. As such, the degree to which eggs may be de-watered 416 

depends on where in the canyon and during what time of day Colorado Pikeminnow may spawn.  417 

Discharge from Grand Canyon Dam is high relative to other dams in the basin, which has the 418 

potential to flush newly-hatched drifting larval fish into Lake Mead prior to them finding a low-419 
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velocity refuge. However, fishes are opportunistic and diversify habitat use based on availability. 420 

For example, while juvenile Humpback Chub, Bluehead Sucker, Flannelmouth Sucker, and 421 

Speckled Dace density is highest in backwaters relative to other habitats available near the Little 422 

Colorado River, juvenile Humpback Chub and Speckled Dace abundance is highest in talus and 423 

debris fan habitats, respectively (Dodrill et al. 2015). Talus and debris fans may provide a velocity 424 

refuge that minimizes energetic costs and provides cover from predation (Crook and Robertson 425 

1999). In contrast, Bluehead Sucker and Flannelmouth Sucker were most associated with sandy 426 

substrate and shallow areas in Grand Canyon (Dodrill et al. 2015), a finding with similarities to the 427 

San Juan River where catostomids in secondary channels have been associated with fine substrates 428 

(Gido and Propst 1999). In addition, small-bodied fish sampling using seines in a variety of shallow 429 

areas from Bright Angel Creek to Pearce Ferry from 2014-2018 indicates dominance by four native 430 

species (Kegerries et al. 2020). This indicates native fishes occupy areas other than backwaters in 431 

Grand Canyon (Converse et al. 1998; Dodrill et al. 2015). Importantly, nonnative predators such as 432 

Walleye Sander vitreus, Smallmouth Bass Micropterus dolomieu, Striped Bass Morone saxatilis, 433 

and Northern Pike Esox lucius are rarely detected and not established (Kegerries et al. 2020; Gilbert 434 

et al. 2022), which is in sharp contrast to other river segments in the basin. 435 

Daily Glen Canyon Dam operations provide a reliable source of water that is unlikely to 436 

completely dry up due to drought or water allocation decisions. Humpback Chub were recently 437 

downlisted from Federally endangered to threatened status (FR 2021), in part due to the Grand 438 

Canyon Humpback Chub population. While Humpback Chub abundance at the LCR has declined 439 

and triggered LTEMP conservation actions, Humpback Chub has expanded into western Grand 440 

Canyon and is naturally recruiting (Van Haverbeke et al. 2017; Rogowski et al. 2018; Kegerries et 441 

al. 2020; Van Haverbeke et al. 2020). As such, Humpback Chub in Grand Canyon are doing 442 

relatively well in this highly altered ecosystem relative to upper basin populations that reside in 443 
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areas with more natural hydrographs and warmer temperatures but experience high levels of 444 

predation (Dibble et al. 2021). If operational base flows were reduced in the future due to a decline 445 

in water availability, sandbars may reappear in the channel, creating low-velocity environments that 446 

could serve as refuge or nurseries.  447 

 448 

Water temperature 449 

Warm water temperature triggers spawning (along with flow and photoperiod cues) and enhances 450 

maturation of gametes in adult fish, while also supporting egg hatching, larval development, and 451 

growth across all life history stages (Table 2). Adult Colorado Pikeminnow in the Green and lower 452 

Yampa rivers migrate to suitable spawning grounds in late spring to early summer and spawn in 453 

groups on the descending limb of the hydrograph when water temperatures reach 16°C, and are 454 

rising (Vanicek and Kramer 1969; Nesler et al. 1988; Tyus 1990; Bestgen and Williams 1994; 455 

Bestgen et al. 1998). In the lower Green River spawning commences at ~19-25°C, but fish do not 456 

consistently spawn until mean daily water temperature exceeds 18°C for 13 to 39 days (Tyus and 457 

McAda 1984; Tyus 1990; Bestgen et al. 1998). In the upper Colorado River, spawning has 458 

commenced in late June to early September when water temperature reaches 18-22°C, water levels 459 

decrease, and flows are 15-30% of maximum annual flow (McAda and Kaeding 1991). In the San 460 

Juan River, back-calculations of age from mesolarvae captured in the western portion of the river 461 

indicated a limited amount of spawning by stocked adult fish in mid-July when temperatures ranged 462 

from 20-23°C (Farrington et al. 2016). Across all studies, the optimum temperature for spawning is 463 

~18-22°C even though adults reproduce outside that range. 464 

Similar to spawning, water temperatures of 18-26°C are needed to ensure egg survival, 465 

development into embryos, and a successful hatch (Hamman 1981; Bestgen and Williams 1994). In 466 

laboratory experiments, embryos consistently exhibited 100% mortality when incubated at 5, 10, 467 
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15, and 30°C temperatures (Marsh 1985). Hatching occurred at 20 and 25°C; however, 20°C 468 

facilitated better embryo survival and hatching success, maximized protolarval size, and reduced 469 

spinal deformities and other abnormalities (Marsh 1985). In another study, Bestgen and Williams 470 

(1994) found that a range of temperatures (18, 22, 26°C) supported successful hatch rates (72, 67, 471 

and 62%, respectively) and larval survival rates 7 days post-hatch (68, 64, and 83%, respectively), 472 

but higher temperatures of 30°C yielded lower hatch and survival rates (38 and 13%, respectively; 473 

Bestgen and Williams 1994). Based on laboratory experiments the optimal temperatures for 474 

embryonic development and post-hatch survival ranges from 18-26°C. Once hatched, 14-day old 475 

laboratory-raised larval Pikeminnow are particularly vulnerable to cold shock, with a 15°C drop 476 

resulting in direct mortality and a 10°C drop resulting in behavioral changes that could result in 477 

indirect mortality (Berry 1988). As such, Green River flows are now regulated to minimize the 478 

temperature difference with the unregulated Yampa River during larval emergence and drift (<5°C; 479 

Muth et al. 2000).  480 

Juvenile and adult Colorado Pikeminnow exhibit positive growth in water temperatures 481 

ranging from 22-30°C (Bestgen and Hill 2016a), with an optimal temperature for juveniles of 25°C 482 

(Black and Bulkley 1985a; Black and Bulkley 1985b). Colorado Pikeminnow grow slower in 483 

temperatures <22°C in laboratory settings (Bestgen 1996) and cease to grow at <13°C or lower 484 

(Osmundson 1987). Analysis of in-channel thermal suitability using mean daily water temperature 485 

and Pikeminnow growth relationships found that the distributional limits of adults occur when 486 

thermal regimes fall below a long-term average of 47-50 Annual Thermal Units (ATUs), which may 487 

include colder upstream reaches of the Colorado River and its major tributaries (Osmundson 2011). 488 

Water temperature in Grand Canyon. In the pre-dam era, the Colorado River in Grand 489 

Canyon was seasonably variable and characterized by mean monthly water temperatures that varied 490 

from 1 to 29°C (Voichick and Wright 2007). Today, drivers of water temperature in Grand Canyon 491 
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include Lake Powell elevation and inflow rates, discharge and flow volume from the reservoir, 492 

ambient air temperature, and solar radiation (Wright et al. 2009; Mihalevich et al. 2020; Dibble et 493 

al. 2021). However, the major driver of water temperature in Grand Canyon that affects fish 494 

populations on a macro-scale is Lake Powell (Figure 4a). When elevation is high and the reservoir 495 

is full, releases are cold and relatively consistent, but when lake elevation falls and the penstocks 496 

draw water from closer to the surface, release temperatures are warmer (Figures 4a, b), with many 497 

of the warmest years coinciding with warm inflows (e.g., 2011, 2019). Reservoir releases from 498 

2017-2021 ranged from 8-17.2°C in May-October, the warmest months of the year. Mainstem water 499 

temperatures historically warmed to ~16°C near Diamond Creek (rkm 388) in western Grand 500 

Canyon in May and reached 18-20°C in June-October (Figure 5). Backwaters reach up to 30°C in 501 

downstream reaches (USGS 2013; Vernieu and Anderson 2013). However, 2022 reached an 502 

unprecedented level of warming throughout Grand Canyon due to low levels in Lake Powell, with 503 

reservoir releases reaching 21.1°C that peaked at 25.4°C near Spencer Creek (rkm 422). 504 

We assessed the thermal suitability of the mainstem Colorado River in Grand Canyon for 505 

adult growth using the concept of ATU units (Osmundson 2011), which were calculated using mean 506 

daily water temperature and predictions from a recently published model (e.g., Dibble et al. 2021). 507 

During the 1980s and 1990s the Grand Canyon was unsuitable for the growth of sub-adult and adult 508 

Colorado Pikeminnow (i.e., <50 ATUs; Figure 6). However, during the last two decades, the river 509 

downstream from Diamond Creek has been suitable for growth in nearly every year, and this trend 510 

has increased over time (Figure 6). In eastern Grand Canyon, habitat from the dam to Bright Angel 511 

Creek has been unsuitable since 1988; however, there is an increasing trend in ATUs from 2000-512 

2020 in the eastern reaches of the canyon. Years in which ATUs increase near 50 are 2005 and 513 

2014, when releases were warmer (Figure 6; Figure S1). While temperatures are cooler in Grand 514 

Canyon than in the upper basin, the prolonged growing season allows for a relatively high degree of 515 
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cumulative warming (Figure 6). With additional declines in Lake Powell due to drought (Udall and 516 

Overpeck 2017), or with allocation decisions that de-emphasize storage in Lake Powell (e.g., 517 

Schmidt et al. 2016), we would expect to see Grand Canyon increase in thermal suitability (Dibble 518 

et al. 2021).  519 

Warmwater tributaries in western Grand Canyon such as Havasu Creek may provide 520 

additional support for Colorado Pikeminnow, but only if adjacent mainstem temperatures do not 521 

prevent upstream movement. There are multiple tributaries of the Colorado River in Grand Canyon 522 

that support native fish populations, including Havasu Creek, Kanab Creek, Tapeats Creek, 523 

Shinumo Creek, Bright Angel Creek, the Little Colorado River, and the Paria River (Figure 2). 524 

Although all except Tapeats Creek contain warm water, a few have natural barriers that would 525 

prevent upstream movement of more than a few hundred meters (e.g., Shinumo, Havasu creeks). 526 

According to our ATU analysis, no major tributaries currently fall next to the mainstem river that is 527 

consistently above 50 ATU. However, Havasu and Kanab creeks are located in between 127-Mile 528 

Creek (rkm 230) and National Canyon (rkm 293), which reached 44 and 49 ATUs, respectively, in 529 

2019 (Figure 6; Figure S1). As such, it is possible fish near their upstream distributional range may 530 

use Havasu or Kanab creeks, which exhibit warmer thermal regimes that could support the growth 531 

of sub-adults or adults (Figure 7). These creeks, although small in flow volume (Figure 7), could 532 

also provide warm conditioning areas similar to that found in Vermillion Creek, a tributary to the 533 

Green River that is used prior to adult spawning in the Yampa River (Bestgen et al. 2017). These 534 

tributaries would also provide sources of native fish prey items like Bluehead and Flannelmouth 535 

Suckers and Speckled Dace, along with nonnative small-bodied fishes such as Fathead Minnow 536 

Pimephales promelas, an important food source for Colorado Pikeminnow in the upper Colorado 537 

River (Vanicek and Kramer 1969; Muth and Snyder 1995). 538 
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Suitability of water temperature to support Colorado Pikeminnow in Grand Canyon. Annual 539 

release temperatures from Glen Canyon Dam historically ranged from 8-13°C, with more recent 540 

release temperatures spiking to 21.1°C due to low reservoir levels. As such, the thermal regime in 541 

western Grand Canyon (below National Canyon) could support Colorado Pikeminnow in all life 542 

history stages at the present time. Water temperatures in the mainstem river meet and exceed 16°C 543 

downstream from Diamond Creek in May and June, and summer temperatures >18°C could support 544 

egg development and the growth of larvae, juveniles, sub-adults, and adults, with further support 545 

from warmwater tributaries such as Havasu and Kanab creeks (Figures 5-7). Even though western 546 

Grand Canyon is characterized by a relatively low temperature range that only reaches the low 20s, 547 

the extended growing season relative to other rivers may lead to good growth conditions for sub-548 

adults and adults through the accumulation of thermal units over time. In the upper Colorado River, 549 

the greatest concentration of adults occurs in the Grand Valley near the upstream limits of their 550 

range (Osmundson and White 2014), where the warmest summer temperatures rarely exceed 25°C, 551 

and more typically are between 20 and 23°C (K. Bestgen, CSU, unpub. data). For juveniles, slower-552 

growing fish with lower lipid reserves going into winter have been associated with reduced survival 553 

when feed was withheld (Thompson et al. 1991). However, fish in western Grand Canyon are likely 554 

to feed during the warm winter months (also see Tyus and Haines 1991), so it is unclear the extent 555 

to which lower temperatures may ultimately influence recruitment.  556 

Colorado River water temperatures in Grand Canyon are dependent on Lake Powell 557 

elevations, which may change resulting from declining inflows due to long-term drought and from 558 

renegotiation of the 2007 Interim Guidelines (USDOI 2007). Should water storage in Lake Powell 559 

increase, water temperatures could return to colder conditions present in the early 1980s and late 560 

1990s (Figure 4b), conditions that were unsuitable for the growth of Humpback Chub near the Little 561 

Colorado River (Robinson and Childs 2001) that would also limit adult Colorado Pikeminnow 562 
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growth (e.g., Figure 6). Alternately, if storage is de-emphasized in Lake Powell, a warming trend 563 

could improve thermal suitability for native fish as well as improve conditions for nonnative fish 564 

(Dibble et al. 2021). The system received a preview of such warming in 2022. A rapid decline in 565 

Lake Powell elevations from 2021-2022 resulted in unprecedented warming of the Grand Canyon, 566 

with release temperatures reaching 21°C and mainstem temperatures near Spencer Creek in western 567 

Grand Canyon reaching 25°C. Should such unprecedented warming continue in the future, the 568 

thermal regime throughout Grand Canyon would be suitable for Colorado Pikeminnow growth, 569 

survival, and reproduction. This warming trend coincided with higher catch rates of YOY Striped 570 

Bass, Smallmouth Bass, and Green Sunfish (T. Kennedy, D. Ward, pers. comm), a sign of 571 

nonnative fish expansion from Lake Powell and other sources. 572 

In the upper basin, Colorado Pikeminnow recruitment has declined in part due to nonnative 573 

fish predation. Grand Canyon typically lacks or has reduced populations of warmwater predators 574 

most often associated with hindering endangered fish recovery efforts in the upper basin (e.g., 575 

Smallmouth Bass, Walleye, Northern Pike, Red Shiner Cyprinella lutrensis (Bestgen et al. 2006; 576 

Johnson et al. 2008). Low predator abundance may be due in part to the cool thermal regime in 577 

eastern Grand Canyon combined with the barrier to upstream fish movement formed by Pearce 578 

Ferry Rapid.  579 

Pearce Ferry Rapid developed when Lake Mead elevation dropped below 346 masl and 580 

through superimposition the river cut a new channel that flows over a bedrock ledge. Fish biologists 581 

hypothesize this rapid is a barrier to movement of nonnative fishes from Lake Mead into warmer 582 

riverine habitat in western Grand Canyon (Kegerries et al. 2020) that is largely inhabited by native 583 

species (Rogowski et al. 2018; Van Haverbeke et al. 2020). The continued persistence of Pearce 584 

Ferry Rapid may be beneficial to prevent nonnative species from moving upstream, but it may also 585 

cut off native fish movement. This could result in a similar situation as the San Juan River, where 586 
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age-0 fish are stocked but many migrate past Piute Farms Waterfall into Lake Powell as adults and 587 

can no longer move upstream into the river (Cathcart et al. 2018; Pennock et al. 2020). As such, 588 

examination of Pearce Ferry Rapid and its importance as a driver of current resource conditions is 589 

warranted.  590 

 591 

Complex, redundant habitat 592 

Colorado Pikeminnow require complex, redundant, low-velocity areas for foraging, spawning, and 593 

rearing (Table 2). Adult fish prefer large pools, deep runs, and eddies to forage, and select spawning 594 

sites characterized by riffles with clean cobble that are located upstream from multiple low-velocity 595 

channel or backwater habitats (Table 2; Tyus and McAda 1984; Ryden and Ahlm 1996; Osmundson 596 

et al. 1998; Osmundson 2006; Durst and Franssen 2014). Tagging studies indicate adult Colorado 597 

Pikeminnow have made spawning migrations of up to 800 km along the Green River and its major 598 

tributaries to visit two spawning grounds – Yampa Canyon in Dinosaur National Monument and 599 

Gray Canyon of the Green River (Tyus 1990; Irving and Modde 2000; Bestgen and Hill 2016a). 600 

This species shows some spawning site fidelity as evidenced by individuals returning to specific 601 

areas used in the year prior (Tyus 1990) or in river reaches exhibiting similar geomorphological 602 

traits (e.g., rubble gravel bars in unique riffle-pool sequences in the Yampa River; Wick et al. 603 

1983). However, there is plasticity in this trait as spawning adults migrate shorter distances and 604 

have been found in close proximity to larvae <22 mm TL in reaches of the upper Colorado River, 605 

indicating spawning occurs in widely scattered locations as long as substrate and riverine conditions 606 

can support reproduction (McAda and Kaeding 1991). Colorado Pikeminnow in the San Juan River 607 

tend to either have small home ranges that include spawning sites (Ryden and Ahlm 1996), or they 608 

migrate comparatively shorter distances relative to those in the Green River (e.g., up to 145 km; 609 

Platania et al. 1991; Ryden and Ahlm 1996). This could be due to physical barriers to movement 610 
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(e.g., dams, diversions, waterfalls) or thermal intolerances as fish move closer to hypolimnetic-611 

release dams such as Navajo Dam. Impediments to long-distance migration have eliminated the 612 

ability of adults to navigate to historically occupied habitats to spawn, as suggested by recaptures of 613 

ripe adults at the base of Flaming Gorge and Taylor Draw dams (Irving and Modde 2000).  614 

Larvae dispersed downstream can move up to 200 km via currents into low-velocity nursery 615 

habitats, where they arrive as soon as 8-10 days post-hatch and remain as juveniles for months or 616 

even years (Bestgen et al. 1998; Bestgen et al. 2006). Low-velocity areas are usually nearshore 617 

channel margin backwaters in the river channel characterized by warmer water and lower flow than 618 

the mainstem river (Vernieu and Anderson 2013), which provide refuge areas for foraging and 619 

conserving energy (Muth et al. 2000). Backwaters are shallow habitats in a river channel that are 620 

situated downstream from obstructions (e.g., sand or gravel bars) that have a direct surface water 621 

connection with the river (Haines and Tyus 1990; Tyus and Haines 1991). These habitats are often 622 

associated with increasing levels of shoreline complexity that enhance larval survival and growth. 623 

Age-0 fish stay in nursery habitats from the time they arrive as larvae in mid-summer to their first 624 

autumn, taking advantage of steady summer flows, warm temperatures, and abundant prey (Vanicek 625 

1967; Vanicek and Kramer 1969; Bestgen and Hill 2016a). Age-1 fish continue to use shallow, 626 

channel-margin backwaters that are warm (>18°C) and turbid (Muth et al. 2000), although spring 627 

season flows can inundate backwaters, displacing juveniles to other locations. After fish transition 628 

to age-2+, they disperse from nursery habitats and move into the main river channel or into 629 

tributaries to forage (Muth et al. 2000).  630 

Complex, redundant habitat in Grand Canyon. There is currently 480 km of unimpeded river 631 

available between Glen Canyon Dam and Pearce Ferry Rapid, with another 26 km between the 632 

rapid and the inflow to Lake Mead. This segment is largely composed of a series of high gradient 633 

riffles and rapids followed by low gradient deep pools and eddies (Leopold 1969; Grams et al. 634 
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2007). Declining Lake Mead elevation has converted once-inundated sections of western Grand 635 

Canyon into free-flowing river that is notably warmer and possibly more productive than eastern 636 

Grand Canyon (Kegerries et al. 2020). In total, the length of unimpeded river in Grand Canyon is 637 

comparable to the amount of habitat available in the upper Colorado and San Juan rivers. At typical 638 

temperatures (to 2020) the river only becomes suitable for sub-adult and adult growth near National 639 

Canyon (293 km from dam), so there is ~187 km of river available upstream from Pearce Ferry 640 

Rapid and another 26 km to the Lake Mead inflow. Tributaries such as Havasu and Kanab creeks 641 

are 15 and 37 km upstream from National Canyon, potentially putting them in range for use by 642 

Pikeminnow for growth, conditioning, or spawning, particularly during warmer years associated 643 

with declining Lake Powell elevations that remain above minimum power pool (e.g., 2022). 644 

Spawning adults seeking loose, oxygenated substrate may use debris fans and cobble bars 645 

throughout Grand Canyon, but there is a large increase in the area of gravel bars in the eastern part 646 

of the canyon (~105-180 km from Glen Canyon Dam) and another large increase in western Grand 647 

Canyon from National Canyon to Diamond Creek (~315-390 km from the dam; Kaplinski et al. 648 

2020; M. Kaplinski, NAU, unpublished data). This is river habitat that would be available to 649 

spawning adults with inundation above the minimum operational flows for typical operations (227 650 

m3s-1) that is re-worked during the occasional spring or fall HFE. Large stochastic tributary flooding 651 

events during monsoon season (Figure 7) deposit new sources of gravel and cobble from side 652 

canyons into the mainstem river that also clean and rebuild existing debris fans. There are more than 653 

750 ungaged ephemeral tributaries between the dam and the downstream end of Grand Canyon that 654 

transport approximately 2,800,000 metric tons of boulders, cobbles, pebbles, sand, and silt onto 655 

debris fans in the mainstem Colorado River annually (Webb et al. 2000). This sediment is poorly 656 

sorted, with finer grained sediment in the matrix of debris fans. In the pre-dam era large floods 657 

would free fine-grained sediment through debris fan reworking, leaving larger-grained substrate 658 
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behind. In the post-dam era only ~25% of debris fans are reworked during floods, such that sand is a 659 

component of the debris fan matrix (Webb et al. 2000) that increases substrate embeddedness. As 660 

such, the strength of the monsoon season, delivery of new substrate, and reworking of that substrate 661 

with normal operational flows or HFEs will affect the quality and quantity of spawning habitats 662 

available. 663 

The majority of the river is canyon-bound and the channel has undergone some simplification 664 

since Glen Canyon Dam was constructed. In the ‘classic’ sense, backwaters are the only nursery 665 

areas available in Grand Canyon. The total number of backwaters available varies annually and 666 

seasonally based on geomorphology and dam operations, since flow fluctuations reduce the area of 667 

and persistence of backwaters (Grams et al. 2010). The total number of backwaters available for use 668 

by fish from Lees Ferry to Diamond Creek ranges from <100 sites (0.2 sites/km) to >300 sites (0.6 669 

sites/km, rkm 25-389; M. Dodrill, USGS, unpub. data). The stability and size of backwaters is also 670 

influenced by daily fluctuations in release, such that they are formed and potentially drained on a 671 

24-hour cycle (Vernieu and Anderson 2013). However, similar to the San Juan River, the Grand 672 

Canyon hosts an array of other low velocity nursery habitats that include the inside bends of the 673 

river, microhabitats behind debris piles, shallow shorelines downstream from debris fans, and 674 

flooded tributary mouths. 675 

Suitability of complex, redundant habitat to support Colorado Pikeminnow in Grand Canyon. 676 

Spawning substrate embeddedness and a lack of persistent nursery habitats may pose a challenge 677 

for fish recruitment. Cobble bars in Grand Canyon differ from the upper basin because they are 678 

smaller in areal extent and the substrate is highly embedded with gravel and fine-grained sediment, 679 

which may hinder egg attachment and adequate development. Flow experiments in the LTEMP EIS 680 

such as spring and fall HFEs may remove fine sediment from cobble bars, but it is unclear the 681 

extent to which these bars are re-worked during an HFE since much of the mobilized sand to build 682 
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sandbars is lying on the bed. During monsoon season, stochastic tributary flooding events introduce 683 

new coarse material into the system that could augment spawning habitat in the mainstem river. The 684 

products of tributary floods are usually poorly sorted, so it is unclear how long newly deposited 685 

coarse material from monsoonal events will remain un-embedded and useful as sufficiently loose 686 

and well-oxygenated spawning substrate. Nonetheless, there are good sources of cobble in Grand 687 

Canyon, and there is potentially adequate-sized spawning habitat at tributary junctions like Spencer 688 

Creek and Surprise Canyon. This potential spawning habitat provides optimism for success, since it 689 

is loose, aerated, and adds complexity to areas that could be used by Colorado Pikeminnow, which 690 

do not need large areas of river habitat to successfully spawn.  691 

Backwaters in Grand Canyon are highly dynamic, easily eroded in the months after an HFE, 692 

can be overtopped at maximum daily flow, and are less stable due to fluctuations in temperature and 693 

flow (M. Dodrill, USGS, unpub. data; Grams et al. 2010). As with other native species, Colorado 694 

Pikeminnow would need to move out of backwaters at different flow regimes into the main channel, 695 

which is colder (USGS 2013; Vernieu and Anderson 2013) and could present difficulties in finding 696 

prey resources. However, young fish display diel movements across river channels and backwaters 697 

in the upper basin (Tyus and Haines 1991), so these fish do not necessarily need to remain in 698 

backwaters to successfully grow. While backwaters are essential areas for larval Colorado 699 

Pikeminnow, they could adapt to the regulated nature of the Grand Canyon ecosystem as Humpback 700 

Chub, Flannelmouth Sucker, Bluehead Sucker, and Speckled Dace have, using other habitats like 701 

debris fans, talus, coves and embayments, flooded tributary mouths, and tributaries to support their 702 

mainstem populations (Converse et al. 1998; Dodrill et al. 2015). In addition, river-inflow habitat in 703 

Lake Mead may provide the level of complexity needed for growth and survival, if they can avoid 704 

predation by nonnative fish. Razorback Sucker use the Lake Mead inflow as well as other inflow 705 

areas for this purpose (Kegerries et al. 2017) and may be somewhat protected from sight-feeding 706 
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predators by turbidity. Colorado Pikeminnow exhibit the same behavior around the San Juan River 707 

inflow area to Lake Powell (e.g., Cathcart et al. 2018). 708 

 709 

Forage base 710 

 Colorado Pikeminnow require an abundant forage base, and low predation and competition from 711 

nonnative species during all life stages (Table 2). Early larvae feed off their yolk sac, but once 712 

larvae emerge from cobble bars and drift to shallow, warmwater nursery habitats they consume 713 

diatoms, algae, early instars of chironomids, and other small invertebrates (Vanicek 1967; Vanicek 714 

and Kramer 1969; Muth and Snyder 1995; Snyder et al. 2016). Age-0 fish (up to 50 mm TL) 715 

consume algae and aquatic invertebrates including cladocerans, copepods, and chironomid larvae 716 

(Vanicek 1967; Vanicek and Kramer 1969; Muth and Snyder 1995). Age-1 fish remain in low-717 

velocity nursery habitats in spring but may start moving between backwaters and the main channel 718 

to forage or seek preferred thermal regimes (Tyus and Haines 1991). Juvenile fish begin the 719 

transition to piscivory at age-1, consuming both aquatic invertebrates and soft-rayed fish (Vanicek 720 

and Kramer 1969). By age-2 the majority of their diet is fish (Vanicek and Kramer 1969), but up to 721 

25% of their diet may still include invertebrate taxa (Franssen et al. 2019). 722 

Colorado Pikeminnow was, for millions of years, the sole large-bodied predator at the top of 723 

the food web in the basin (Tyus 1991). Its population persistence depended on abundant soft-rayed 724 

fishes including native Flannelmouth Sucker, Bluehead Sucker, Roundtail Chub Gila robusta, 725 

Speckled Dace, and now-threatened and endangered species Humpback Chub, Razorback Sucker, 726 

and Bonytail Gila elegans. At the present time Colorado Pikeminnow also consume nonnative 727 

fishes including Sand Shiner Notropis stramineus, Red Shiner, and Fathead Minnow (Vanicek and 728 

Kramer 1969; Osmundson 1999). Colorado Pikeminnow can consume fish up to 40% of their body 729 

length (Osmundson et al. 1998; Ryden and Smith 2002; Gilbert et al. 2018), but anatomical changes 730 
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in head morphology with age may limit the size of suitable prey (Gilbert et al. 2018). Colorado 731 

Pikeminnow vertical gape is proportionally smaller relative to other non-native species that have 732 

invaded the basin, including Northern Pike, Channel Catfish, Flathead Catfish Pylodictis olivaris, 733 

Striped Bass, Largemouth Bass Micropterus salmoides, Smallmouth Bass, Brown Trout Salmo 734 

trutta, and Rainbow Trout (Oncorhynchus mykiss; D. Ward, pers. comm). For example, an adult 735 

Colorado Pikeminnow measuring 600 mm has a vertical gape of ~38 mm, whereas nonnative 736 

species range from 52-75 mm at the same body length (D. Ward, USGS, unpub. data). Collectively, 737 

these studies indicate this top predator has anatomical features that limit predation to smaller-bodied 738 

fishes relative to their body length. 739 

Forage base in Grand Canyon. In Grand Canyon, the aquatic invertebrate food base is 740 

unstable and exhibits low diversity, such that fish persisting primarily on aquatic invertebrates to 741 

adulthood are food-limited (Kennedy et al. 2013). In backwaters, Behn et al. (2010) found the 742 

biomass and abundance of four common invertebrates after the spring 2008 HFE was highest in 743 

Marble Canyon and lowest in western Grand Canyon. Since there are unknowns regarding the 744 

historical and current state of plankton and invertebrates in backwaters in western Grand Canyon 745 

under normal operations and during bug flows (samples have not been processed yet), it is unclear 746 

whether food resource conditions for larval and age-0 fish are improving relative to limited data 747 

collected more than a decade ago. Furthermore, many of the river reaches that could be used by 748 

Colorado Pikeminnow were lake habitat 5-20 years ago. Nonetheless, Humpback Chub and 749 

Flannelmouth Sucker have expanded into and increased in abundance at these same locations (Van 750 

Haverbeke et al. 2017), and both species primarily consume aquatic invertebrates.  751 

The composition and abundance of the fish community downstream from Lees Ferry has 752 

shifted dramatically since 2000 (Van Haverbeke et al. 2017; Boyer and Rogowski 2020). In the late 753 

1990s and early 2000s nonnative fish were abundant throughout the river but transitioned to a mix 754 
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of nonnative and native species by ~2009, and the lower river community is now primarily native 755 

fish (Boyer and Rogowski 2020; Kegerries et al. 2020; Van Haverbeke et al. 2020). While the cause 756 

for this shift in community composition is unknown, hypotheses include warming temperatures in 757 

western Grand Canyon combined with the emergence of Pearce Ferry Rapid and a lack of nonnative 758 

fish predators. Trends in catch indicate system-wide declines in nonnative Common Carp and 759 

Brown Trout (except between Glen Canyon Dam and Lees Ferry) that coincided with increases in 760 

native Flannelmouth Sucker, Bluehead Sucker, and Speckled Dace (Boyer and Rogowski 2020; 761 

Kegerries et al. 2020). Flannelmouth Sucker, an important prey source, represents the largest 762 

proportion of native fish biomass and are larger in eastern Grand Canyon but smaller and more 763 

numerous in western Grand Canyon (Van Haverbeke et al. 2020). 764 

Nonnative species in Grand Canyon have declined in abundance and distribution over the past 765 

two decades and captures of Walleye, Northern Pike, and Smallmouth Bass throughout the system 766 

remain extremely rare. Red Shiner is captured via electrofishing and seining in western Grand 767 

Canyon but overall catch rates are low relative to native species (Boyer and Rogowski 2020; 768 

Kegerries et al. 2020). From 2014-2018, four native species (Bluehead Sucker, Flannelmouth 769 

Sucker, Humpback Chub, Speckled Dace) comprised 80.5-98.2% of the larval fish catch while eight 770 

nonnative species (Brown Trout, Rainbow Trout, Common Carp, Fathead Minnow, Plains Killifish 771 

Fundulus zebrinus, Green Sunfish Lepomis cyanellus, Western Mosquitofish Gambusia affinis, Red 772 

Shiner) comprised 1.8-19.5% of the larval catch (Kegerries et al. 2020; Gilbert et al. 2022). Green 773 

Sunfish, Plains Killifish, Channel Catfish, and Red Shiner may prey on juvenile stages of Colorado 774 

Pikeminnow (e.g., Ward and Vaage 2018; Hedden et al. 2020) but they are consistently <1% of the 775 

fish community (Boyer and Rogowski 2020; Kegerries et al. 2020). Annual backwater seining data 776 

from 2000-2018 indicate Fathead Minnow are more abundant than Red Shiner in Grand Canyon 777 

backwaters (Table S2); however, Fathead Minnows tend not to be piscivorous in the wild and may 778 
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provide a good food source for juvenile fish (M. McKinstry, pers. comm). In the upper Colorado 779 

River, a significant positive relationship has been detected between Colorado Pikeminnow 780 

condition factor and Fathead Minnow abundance (D. Osmundson, USFWS, unpub. data). 781 

With the abrupt decline in Lake Powell elevations from 2021-2022, the thermal regime of the 782 

Colorado River in Grand Canyon shifted quickly toward one conducive to warmwater fish growth. 783 

In the past five years, peak annual temperatures in Lees Ferry reached 13.5°C (2017), 12.9°C 784 

(2018), 15.4°C (2019), 12.8°C (2020), and 16.7°C (2021). Temperatures in September 2022 785 

reached 21.4°C and are anticipated to continue to warm. This warming has increased the suitability 786 

of this reach for nonnative predators, such that there is now concern this reach may not remain in 787 

low abundance of predatory nonnative fish, creating additional pressure on native fish populations. 788 

State and Federal agencies are currently planning management actions to slow or prevent a potential 789 

invasion of nonnative predatory fishes into Grand Canyon. 790 

Suitability of forage base to support Colorado Pikeminnow in Grand Canyon. Western Grand 791 

Canyon exhibits low algal and invertebrate productivity and low production of small-bodied fishes 792 

to support the mixed diet of juvenile Colorado Pikeminnow, but there are no forage base concerns 793 

for sub-adult and adult fish once they switch to full piscivory. The aquatic food web in Grand 794 

Canyon exhibits poor diversity relative to other basin rivers (Kennedy et al. 2013; Kennedy et al. 795 

2016), even in western Grand Canyon (Behn et al. 2010; Kennedy et al. 2013). However, multiple 796 

life history stages of Humpback Chub are abundant in a seemingly food-limited area of the canyon 797 

and consume macroinvertebrates including early instars of chironomids that support larval fish. Bug 798 

flows, which were tested from 2018-2020, increased gross primary production and improved 799 

aquatic insect diversity and abundance for higher trophic levels, including fishes (T. Kennedy, 800 

USGS, unpub. data; Deemer et al. 2022).  801 
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Sub-adult and adult Colorado Pikeminnow could be supported by native fishes such as 802 

Flannelmouth Sucker, which are more abundant than Humpback Chub in western Grand Canyon, in 803 

addition to small-bodied nonnative fishes such as Fathead Minnow and Red Shiner. We recognize 804 

that reintroducing a top predator into a river segment with Humpback Chub is not without risk. 805 

However, Humpback Chub overlap with Colorado Pikeminnow in three upper basin reaches 806 

(Westwater Canyon and Black Rocks in the middle Colorado River, and Desolation/Gray Canyon 807 

on the Green River) that have not exhibited population level impacts—instead, Humpback Chub are 808 

affected more by flows and predatory nonnative fish (USFWS 2018). There are bioenergetic 809 

differences between native predators such as Colorado Pikeminnow and high-risk nonnative 810 

predators such as Smallmouth Bass, Northern Pike, and Channel Catfish (Johnson et al. 2008; 811 

Zelasko et al. 2016; Bestgen et al. 2018). On an individual basis, Colorado Pikeminnow consume 812 

fewer fish prey and also maintain lower densities when their populations are stable (e.g., McGarvey 813 

et al. 2010). As such, Colorado Pikeminnow and nonnative predators should not be viewed as 814 

interchangeable relative to their impact on Humpback Chub. In addition, Colorado Pikeminnow and 815 

Humpback Chub co-evolved over three million years (Mueller and Marsh 2002) and the latter has 816 

developed morphological and behavioral adaptations that may afford the latter with some protection 817 

from predation (Gilbert et al. 2018; Ward and Ward 2020). For these reasons, it is unlikely that 818 

Colorado Pikeminnow will impact Grand Canyon Humpback Chub at a population level.  819 

 820 

Science Panel Recommendation and Next Steps 821 

Myriad factors contribute to the successful reproduction, growth, and viability of fish populations. 822 

However, there are key habitat attributes and demographic factors that are essential for the 823 

successful reintroduction of a species like Colorado Pikeminnow into an ecosystem. During the first 824 

phase of this project, Science Panel experts reviewed information from Grand Canyon and 825 
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conducted a habitat suitability assessment based on expert opinion, combined with an on-the-ground 826 

assessment of the Colorado River in Grand Canyon. The Panel also took into consideration the 827 

current status of populations in the upper basin, their recovery trajectory, and threats that could 828 

decrease future resiliency and the redundancy of Colorado Pikeminnow basin-wide. Based on this 829 

collective information, the Panel offers their unanimous recommendation with supporting evidence, 830 

below. 831 

The Science Panel concluded that habitat attributes currently available in Grand Canyon could 832 

satisfy some, but perhaps not all, of the life history requirements of Colorado Pikeminnow. The 833 

Panel was in agreement that the Grand Canyon has the potential to provide habitat to support adult 834 

and sub-adult growth, foraging, migrations, and spawning, but the potential for low survival of early 835 

life history stages may create a recruitment bottleneck that reduces the species’ recovery potential in 836 

Grand Canyon. As opportunists, adult fish are likely to find suitable spawning substrate that 837 

provides loose, oxygenated substrate for egg deposition and embryo and larval development. 838 

However, at the present time there is uncertainty on whether the Colorado River in Grand Canyon 839 

could provide redundant, stable nursery habitats for dispersed larvae and other young life stages. 840 

Backwaters in Grand Canyon erode and fill in quickly and are not persistent or stable when subject 841 

to daily flow fluctuations. While warm water temperatures are likely to facilitate larval and juvenile 842 

growth, redundant sources of complex, low-velocity areas to support foraging are fewer in number 843 

than in the upper basin. Further, there is concern over the productivity of western Grand Canyon 844 

and whether food resources could support larval and juvenile fish prior to their transition to full 845 

piscivory.  846 

Regardless, the Science Panel recognized that native populations of Humpback Chub and 847 

Flannelmouth Sucker have expanded in western Grand Canyon, even though habitat quality for 848 

native fishes there may be lower relative to some other upper basin reaches that have more diverse 849 
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nursery habitats combined with more natural flow and temperature regimes. Humpback Chub 850 

populations in western Grand Canyon have increased substantially in the last few years, exhibit a 851 

high condition factor, and reside in areas that support multiple life stages. Flannelmouth Sucker are 852 

more numerically abundant than Humpback Chub in western Grand Canyon. Combined with a lack 853 

of problematic warmwater nonnative predators, the Grand Canyon is providing conditions that 854 

faciliate native, endemic fish population success, and that may facilitate establishment of Colorado 855 

Pikeminnow. 856 

Colorado Pikeminnow populations in the Green and upper Colorado rivers have declined 857 

precipitously in the presence of warmwater predators, and the San Juan River population persists 858 

mainly via augmentation with age-0 and age-1 fish, although there is some recent evidence of 859 

recruitment. At this rate, currently self-sustaining populations in the Green and upper Colorado 860 

rivers may need augmentation in the next decade to persist. As such, there is interest in finding river 861 

reaches that may support a self-sustaining population, or at least a population of fish that persists 862 

through stocking and would provide a natural refuge. The Panel believes that Grand Canyon may 863 

provide the best option in the species’ currently unoccupied range because:  864 

1. The thermal regime has warmed and is expected to continue to warm. 865 

2. There are large self-sustaining populations of native species in the river. 866 

3. Nonnative piscivorous fishes are considerably less abundant than in other rivers. 867 

4. There is a reliable water supply that is unfragmented and not affected by river withdrawals.  868 

5. The Colorado River in Grand Canyon represents a historically occupied river reach. 869 

6. There is a robust multi-level monitoring and research program in place to assist with 870 

research, and if warranted, reintroduction/augmentation efforts and recovery evaluation. 871 
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7. If all life history requirements cannot be met, there is potential to provide an additional 872 

genetic refuge with only the adult life stage present. From a recovery planning perspective, 873 

this could contribute to population redundancy, even if it is not self-sustaining. 874 

8. There is tribal and river community support for a potential reintroduction. Tribal members 875 

from the Navajo and Hualapai tribes are supportive of this work, since there is a cultural 876 

significance of reestablishing a native species into the Colorado River ecosystem. The 877 

Hualapai Tribe is open to providing logistical support on the river and offered to provide a 878 

nearby tribal hatchery to species propagation. There is also river community support, which 879 

include boatmen that run commercial and recreational trips in the canyon. 880 

9. Reintroduction of extirpated species is consistent with the National Park Service mission in 881 

Grand Canyon and is supported by state fish and game departments.  882 

 883 

Science Panel recommendation 884 

The Colorado Pikeminnow Science Panel recommends that wildlife resource managers pursue 885 

the next phase of this process, which focuses on experimentation to assess reintroduction feasibility. 886 

Experimentation will help resolve critical uncertainties to determine whether the Grand Canyon 887 

could support all life history stages of Colorado Pikeminnow in the future. To meet this goal, the 888 

Science Panel developed a preliminary list of research questions to consider during the 889 

experimentation phase (Text S2). While not exhaustive, this list provides discussion points for 890 

future research priorities that may better inform a decision on reintroduction into Grand Canyon, 891 

which would entail recovery plan inclusion, implementation of translocations and stocking, and 892 

population monitoring. The panel recognizes that many regulatory and administrative steps would 893 

need to be completed prior to experimentation, however a review and numeration of those steps is 894 

beyond the scope of this document. 895 
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This recommendation, with its supporting information, is in agreement with the recent release 896 

of the Species Status Assessment for Colorado Pikeminnow by the U.S. Fish and Wildlife Service, 897 

which evaluated habitat and demographic features in reaches where the species was historically 898 

present. The SSA states: “The Grand Canyon reach of the Colorado River ranked moderate for 899 

habitat factors. While peak flows and base flows are not managed in consideration of Colorado 900 

Pikeminnow needs, recent warming of water temperatures and large increases in native fish 901 

abundance, particularly in the western Grand Canyon, have improved the suitability of this river 902 

reach. This segment of river is also relatively long, and has some tributary habitat, but the upstream 903 

extent is likely cold for most life stages of Colorado Pikeminnow, and it is not clear to what extent 904 

spawning and nursery habitats might be available.”(USFWS 2020b). As such, the Science Panel 905 

recommends by consensus that Grand Canyon resource management agencies move to the 906 

experimentation phase, as guided by unresolved research questions outlined in Text S2. 907 

 908 

909 
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Supplemental Material 910 

Text S1. Final version of the Colorado Pikeminnow life history survey that was distributed to 911 

Science Panel members prior to the workshop and Colorado River trip in September 2019. Results 912 

were used to reach consensus on life stage requirements related to flow, temperature, nursery 913 

habitat, and prey using information from remaining populations in the upper basin. 914 

Text S2. Colorado Pikeminnow Science Panel members developed a list of research questions that 915 

could be addressed if natural resource managers decide to pursue experimentation within Grand 916 

Canyon. Note: This is not an exhaustive list of all of the research questions that can or should be 917 

addressed. It merely represents a list of questions the Science Panel thought would  provide fodder 918 

for future discussion.  919 

Table S1. Population estimates for adult Colorado Pikeminnow Ptychocheilus lucius (≥ 450 mm 920 

TL) in the Green, upper Colorado, and San Juan rivers based on mark-recapture data for the years 921 

1992-2018. Numbers in parentheses indicate 95% confidence intervals, where available. Green 922 

River estimates are from Bestgen et al. (2018) and additional data published in Dibble et al. (2020; 923 

2021) and include populations in the Middle and Lower Green, Yampa, and White rivers. Upper 924 

Colorado River estimates are from Osmundson and White (2014) and Elverud and Ryden (2018). 925 

The San Juan River estimate for 1995 is from Ryden (2000), while 2011-2016 estimates are from 926 

Diver and Wilson (2018) and indicate mean adult census estimates (Nc) from genetics.  927 

Table S2. Fish monitoring data collected by the U.S. Geological Survey, Grand Canyon Monitoring 928 

and Research Center for the total number of Red Shiner Cyprinella lutrensis and Fathead Minnow 929 

Pimephales promelas captured during backwater seine hauls in the Colorado River in Grand 930 

Canyon, AZ from 2000-2018. Backwaters were sampled canyon-wide from the Lees Ferry to 931 

Diamond Creek segment of river. 932 
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Figure S1. Plots showing the total number of Annual Thermal Units (ATUs) in the Colorado River 933 

at sites located throughout Grand Canyon using data from 1988-2020. Annual Thermal Units are a 934 

metric of cumulative thermal heating of the river, and were calculated using mean daily water 935 

temperature and model predictions from Dibble et al. (2020) following the methods of Osmundson 936 

(2011). 937 

Reference S1. Behn KE, Kennedy TA, Hall RO, Jr. 2010. Basal resources in backwaters of the Colorado River 938 

below Glen Canyon Dam-Effects of discharge regimes and comparison with mainstem depositional 939 
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Tables 1550 

Table 1. Members of the Science Panel (subject matter experts), Steering Committee 1551 

(representatives from resource management agencies), and staff from the U.S. Geological Survey 1552 

that were involved in the Colorado Pikeminnow Reintroduction Feasibility Study.  1553 

 1554 

Science Panel Affiliation Role 

Kevin Bestgen Colorado State University Colorado Pikeminnow expert; 

provided scientific review of 

habitat suitability in Grand 

Canyon and provided 

recommendation on 

experimentation phase 

Keith Gido Kansas State University 

Tildon Jones U.S. Fish and Wildlife Service 

Mark McKinstry U.S. Bureau of Reclamation 

Doug Osmundson U.S. Fish and Wildlife Service 

(Emeritus) 

Dale Ryden U.S. Fish and Wildlife Service 

Robert (Bob) 

Schelly 

National Park Service 

  

Steering 

Committee 

Affiliation Role 

Winkie Crook Hualapai Tribe Resource management agency 

representative who guided this 

process; selected Science Panel 

members; participated in 

workshop and river trip; 

developed list of questions to be 

addressed by panel; reviewed 

recommendation from panel 

Mark Grover Arizona Game and Fish Department 

(replaced by Skyler Hedden, 2021) 

Brian Healy U.S. National Park Service 

Emily Omana Smith U.S. Bureau of Reclamation 

Brandon Senger Nevada Department of Wildlife 

Kim Yazzie Navajo Nation 

Kirk Young U.S. Fish and Wildlife Service 

USGS Staff Role Role 

Kimberly Dibble Fish Biologist, Facilitator of Project Facilitator and lead author; 

synthesized information and 

recommendation from panel 
 

Grand Canyon native fish expert; 

participated in workshop and 

river trip 
 

Second author and co-lead; 

participated in workshop and 

river trip 

 

 
 

David Ward 

 

 
 

Research Fish Biologist 

 

 
 

Charles Yackulic 

 

 
 

Research Statistician 

 1555 

1556 
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Table 2. Summarized results from a structured Life History Survey completed by Science Panel 1557 

members prior to the workshop. The ‘original’ metric (see Text S1) contains information on specific 1558 

environmental features associated with each life history stage compiled using existing literature. 1559 

The ‘revised’ metric (this table) reflects suggested edits to the original metric by Panel members. 1560 

Each Panel member ranked the ‘importance’ of each metric for completing each life history stage, 1561 

and then ranked their ‘certainty’ on this score (i.e., how certain they were of their answer to the 1562 

‘importance’ question). Numbers presented reflect the average score across seven panelists. Low 1563 

scores indicate higher importance and certainty by panel members. The importance scale was: 1564 

1=essential, 2=preferred, 3=not essential, 4=unsure. For certainty, the scale was: 1=highly certain, 1565 

2=certain, 3=neutral, 4=uncertain, 5=highly uncertain.  1566 

 1567 
Life Stage Flows (Peak, 

Base) 

Water 

Temperature 

 Refuge/Nursery 

Habitat 

Migration, Habitat 

Connectivity 

Substrate Forage Base 

Spawning 

Adult 

Spring snowmelt 

runoff leading to a 

peak spring flow 

that stimulates 

spawning; flows 

sufficient to clean/ 

maintain spawning 

substrate; peak 

flow followed by 

declining summer 

base flows 

>16°C (and 

increasing) in 

late spring to 

late summer 

 River reaches with a 

gradient sufficient 

to provide spawning 

riffles with cobble 

clean of 

accumulated 

sediments that are 

located upstream 

from low-velocity 

nursery habitats 

Habitat connectivity 

sufficient to provide 

passage between 

home range and 

spawning bars in 

spring/summer 

Cobble and 

gravel 

recently 

cleaned by 

spring 

flows 

Abundant soft-

rayed fishes to 

support energetic 

needs 

Importance 1.7 1.3  2.0 1.8 1.3 1.5 

Certainty 2.4 1.9  2.2 3.0 2.3 2.2 

Egg Riffle habitats with 

sufficient flow to 

oxygenate 

interstitial spaces 

in substrate; peak 

flow followed by 

higher base flows 

to facilitate 

hatching success 

18-26°C in 

late spring to 

late summer 

 River reaches with a 

gradient sufficient 

to provide spawning 

riffles with cobble 

clean of 

accumulated 

sediments that are 

located upstream 

from low-velocity 

nursery habitats 

NA Cobble and 

gravel 

recently 

cleaned by 

spring 

flows 

NA 

Importance 1.0 1.5  2.2 NA 1.3 NA 

Certainty 1.8 2.2  1.8 NA 2.0 NA 

Embryo/ 

Larvae  

(substrate) 

Riffle habitats with 

sufficient flow to 

oxygenate 

interstitial spaces 

in substrate; 

moderate peak and 

base flows 

18-26°C to 

support 

embryo 

incubation, 

hatch, and 

larval survival 

 River reaches with a 

gradient sufficient 

to provide spawning 

riffles with cobble 

clean of 

accumulated 

sediments that are 

located upstream 

NA Cobble and 

gravel 

recently 

cleaned by 

spring 

flows 

Sufficient energy 

reserves available 

via yolk sac to 

sustain protolarval 

and flexion 

mesolarval stages, 

as long as they are 

upstream from 
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from low-velocity 

nursery habitats 

suitable nursery 

habitats 

Importance 1.1 1.6  2.3 NA 1.3 1.5 

Certainty 2.0 2.0  2.0 NA 2.0 1.5 

Larvae 

(dispersed) 

Low to zero 

velocity backwater 

habitats; summer 

flows sufficient to 

provide complete 

inundation of 

nursery habitats 

and transport 

larvae to them 

18-30+°C to 

support larval 

growth; lack 

of ‘cold 

shock’ 

conditions 

(e.g., <5°C 

difference 

between 

tributary and 

mainstem) 

 Low elevation 

gradients with low-

velocity channel 

habitats 

Long stretches of 

habitat that allow 

for larval 

entrainment in 

backwater areas as 

they somewhat 

passively drift 

downstream 

Low-

velocity 

areas with 

high levels 

of shoreline 

complexity 

Abundant diatoms, 

algae, and first 

instars of aquatic 

invertebrates such 

as chironomids 

Importance 1.3 1.6  2.3 2.1 2.3 1.1 

Certainty 2.0 2.3  2.4 2.4 2.9 1.6 

Juvenile 

(age-0) 

Low-velocity areas 

with steady, 

moderate flows 

that inundate 

nursery areas but 

do not overtop 

them; peak flows 

to maintain/create 

these habitats and 

maintain channel 

complexity; peak 

flows to reduce 

reproduction by 

non-native 

predators; steady 

mainstem flows 

18-30°C to 

support 

juvenile 

growth and 

maximize 

energy 

reservoirs 

prior to winter 

 Low elevation 

gradients with low-

velocity channel 

habitats 

Mosaic of 

connected or closely 

located nursery 

habitats to allow for 

dispersion and use 

of multiple 

backwater habitats 

Low-

velocity 

areas with 

high levels 

of shoreline 

complexity 

Larger aquatic 

invertebrates and 

algae available, 

including 

cladocerans, 

copepods, and 

chironomid larvae 

Importance 1.9 2.0  2.3 2.0 2.1 1.3 

Certainty 2.3 1.9  2.6 2.0 2.3 1.7 

Juvenile  

(age 1-2) 

Low-velocity areas 

with steady, 

moderate flows 

that inundate 

nursery areas but 

do not overtop 

them; peak flows 

to reduce 

reproduction by 

non-native 

predators 

18-30°C to 

support 

juvenile 

growth 

 Low elevation 

gradients with low-

velocity channel 

habitats 

Mosaic of 

connected or closely 

located nursery 

habitats to allow for 

dispersion and use 

of multiple 

backwater habitats 

Low-

velocity 

areas with 

high levels 

of shoreline 

complexity 

Large aquatic 

invertebrates and 

small soft-rayed 

fishes to support 

mixed diet 

Importance 2.6 1.9  2.3 2.3 2.4 1.4 

Certainty 2.4 2.4  2.7 2.5 2.7 1.6 

Sub-adult 

and Adult 

Variable and high 

peak spring flows 

to redistribute 

substrate, flush 

fine sediment, and 

prevent vegetation 

encroachment and 

channel narrowing 

18-30°C to 

support sub-

adult and 

adult growth, 

or Annual 

Thermal 

Units >47-50 

 Access to deep 

pools, runs, and 

eddies for foraging 

and refuge 

Sufficient habitat 

available to forage 

and spawn that 

supports an adult 

population 

Cobble, 

gravel, and 

sandy 

substrate 

Abundant soft-

rayed fishes to 

support fully 

piscivorous adult 

diet 

Importance 1.9 1.7  1.7 1.6 2.4 1.1 

Certainty 2.4 2.6  2.3 2.1 2.9 1.4 
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Figure Legends 1569 

Figure 1. Map of the Colorado River Basin in western North America, delineated into six 1570 

geographic subbasins where Colorado Pikeminnow populations currently (in red) or historically (in 1571 

blue) existed. The three remaining populations of Colorado Pikeminnow (shaded blue) are located 1572 

in the Green, Colorado, and San Juan river subbasins. The species is extirated from the Lower 1573 

Colorado River Mainstem and Gila River subbasins (shaded gray). Colorado Pikeminnow are also 1574 

extirpated from the focal area of this study, the Colorado River in Grand Canyon (shaded yellow). 1575 

Inset map shows Colorado River basin states in western North America (Wyoming, Colorado, Utah, 1576 

New Mexico, Arizona, Nevada, California). 1577 

Figure 2. Map of the Colorado River in Grand Canyon and its major tributaries, with boundaries for 1578 

Glen Canyon National Recreation Area, Grand Canyon National Park, Lake Mead National 1579 

Recreation Area, and Havasupai, Hualapai, and Navajo Nation lands. Inset map shows study area 1580 

states of Arizona, Utah, and Nevada (red box).  1581 

Figure 3. Colorado River flows in the pre-dam period (1950-1955), during construction (1956-1582 

1963), and post-dam (1963-2020) downstream from Glen Canyon Dam, Arizona. This includes the 1583 

pre- Environmental Impact Statement (EIS) time period (1963-1995), the time period governed by 1584 

the 1996 EIS and Record of Decision (ROD; 1995-2015), and current operations under the Long-1585 

Term Experimental and Management Plan EIS and ROD (2017-present). 1586 

Figure 4. a) Daily representative thermal profiles at depth in Lake Powell, Arizona in July during 1587 

low, intermediate, and high storage conditions leading to warm, cool, and cold releases. The 1588 

horizontal gray line at 75 meters deep is penstock depth relative to the dam crest (i.e., “0”). b) Pre- 1589 

and post-dam release temperatures from Lake Powell in July. In the pre-dam era (1949-1956), mean 1590 

July river temperatures were consistently warm (25.3 ± 1.6°C SD), whereas in the post-dam era 1591 

(1965-2015), mean July release temperatures were highly influenced by reservoir storage.  1592 
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Figure 5. Predicted mean monthly water temperatures from Glen Canyon Dam to Pearce Ferry, 1593 

Arizona, from May-October using conditions present from 2010-2020 and the water temperature 1594 

model developed by Dibble et al. (2021). Colors are associated with water temperatures from 8-1595 

20°C, with temperatures nearest the dam cool in May and warming to peak temperatures in October, 1596 

whereas water temperatures reach their peak in mid-summer and decline in fall.  1597 

Figure 6. Calculated number of Annual Thermal Units (ATU) in the Colorado River from 1988-1598 

2020 for four locations in western Grand Canyon, Arizona (National Canyon, rkm 293; at Diamond 1599 

Creek, rkm 388; at Spencer Creek, rkm 422; modeled at Pearce Ferry, rkm 476). The horizontal line 1600 

at 50 ATU represents the estimated threshold above which the thermal regime is suitable for adult 1601 

growth. Eastern Grand Canyon locations are shown in Figure S1. 1602 

Figure 7. Maximum daily water temperature and flow in Havasu and Kanab creeks (tributaries to 1603 

the Colorado River in Grand Canyon, Arizona) from 1990-2021. Warm water temperatures provide 1604 

a thermal regime conducive to Colorado Pikeminnow growth, while flash floods are stochastic 1605 

events that bring new sources of gravel and cobble to the river as potential spawning habitat.  1606 

 1607 

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023



 

1 

Figure 1 1 

 2 

3 

Figures 1-7 Click here to access/download;Figure;JFWM-22-031
Figures.docx

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=25265&guid=6a24de57-e611-4999-b0ad-eb42a882f659&scheme=1
https://www.editorialmanager.com/jfwm/download.aspx?id=25265&guid=6a24de57-e611-4999-b0ad-eb42a882f659&scheme=1


 

2 

Figure 2 4 

 5 

6 

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023



 

3 

Figure 3 7 

 8 
9 

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023



 

4 

Figure 4 10 

a) 

 

b) 

 
 

  
 11 

12 

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023



 

5 

Figure 5 13 

 14 

 15 
16 

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023



 

6 

Figure 6 17 
 18 

 19 

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023



 

7 

 

Figure 7 20 

 21 

 22 
 23 

 24 

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023



  

Text S1

Click here to access/download
Supplemental Material

JFWM-22-031_Text S1.docx

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=25266&guid=5cce5810-48ae-430b-8778-635da5a57664&scheme=1


  

Text S2

Click here to access/download
Supplemental Material

JFWM-22-031_Text S2.docx

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=25267&guid=0410d0eb-ba65-400f-ac5f-c88147ea3224&scheme=1


  

Tables S1_S2

Click here to access/download
Supplemental Material

JFWM-22-031_Tables S1_S2.docx

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=25268&guid=21df57fe-74d0-40f4-a6ef-320bd6f9c605&scheme=1


  

Figure S1

Click here to access/download
Supplemental Material

JFWM-22-031_Figure S1.docx

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=25269&guid=56d046de-5c68-4cc3-ad92-9902bb1953f6&scheme=1


  

Reference S1

Click here to access/download
Supplemental Material
Behn et al. 2010.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24245&guid=19dabb32-c2ca-4764-8642-cef43b400d37&scheme=1


  

Reference S2

Click here to access/download
Supplemental Material
Bestgen et al. 2017.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24249&guid=f25d8472-21a3-46ed-98e5-fbfedf23f60e&scheme=1


  

Reference S3

Click here to access/download
Supplemental Material
Bestgen et al. 2018.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24250&guid=b2d46017-31be-4533-8221-73085d5ccb7f&scheme=1


  

Reference S4

Click here to access/download
Supplemental Material

Bestgen and Hill 2016a.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24246&guid=44202997-354b-445f-b08d-992c96a5fffe&scheme=1


  

Reference S5

Click here to access/download
Supplemental Material

Bestgen and Hill 2016x.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24247&guid=bb0fe8c5-6f67-4d3b-8493-68c07451b80b&scheme=1


  

Reference S6

Click here to access/download
Supplemental Material
Bestgen et al. 1998.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24248&guid=afdb88d7-571c-45b8-8389-e8967f2c4258&scheme=1


  

Reference S7

Click here to access/download
Supplemental Material

Boyer and Rogowski 2019.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24251&guid=ebc93ae6-797b-4ec5-aee4-23eec7ce544b&scheme=1


  

Reference S8

Click here to access/download
Supplemental Material

Diver and Wilson 2018.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24252&guid=06920eaa-432e-440c-aaf7-74cd246e32bd&scheme=1


  

Reference S9

Click here to access/download
Supplemental Material

Elverud and Ryden 2018.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24253&guid=24a0e162-e385-4a06-8f1e-067be319cbbc&scheme=1


  

Reference S10

Click here to access/download
Supplemental Material

Euler 1984.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24254&guid=5925ace9-d61a-4a73-8c36-0d7e7b1fa8fd&scheme=1


  

Reference S11

Click here to access/download
Supplemental Material

Farrington et al. 2016.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24255&guid=a20f17a4-7701-4eb6-9776-27c419926250&scheme=1


  

Reference S12

Click here to access/download
Supplemental Material

GCNP 2013.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24256&guid=54e682dd-7688-4571-b002-f2ea01fd4090&scheme=1


  

Reference S13

Click here to access/download
Supplemental Material

Gilbert and Scofield 1898.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24257&guid=6b89eb76-8b0f-4d06-9184-964da69bb2c7&scheme=1


  

Reference S14

Click here to access/download
Supplemental Material
Grams et al. 2010.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24258&guid=61d70549-0001-4e0e-9cb9-8ef52c2d56ea&scheme=1


  

Reference S15

Click here to access/download
Supplemental Material
Haines et al. 1998.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24259&guid=7f31edd3-64cc-4110-88e5-c6bd063150da&scheme=1


  

Reference S16

Click here to access/download
Supplemental Material

Jordan 1889.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24260&guid=afd9b044-a6fd-4e3e-8429-195f28ee63a1&scheme=1


  

Reference S17

Click here to access/download
Supplemental Material

Kennedy et al. 2013.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24261&guid=e0ba271d-ae89-427a-82e5-f11bf6364f69&scheme=1


  

Reference S18

Click here to access/download
Supplemental Material

Leopold 1969.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24262&guid=2c356633-4d90-419d-b96e-bd7b8806622e&scheme=1


  

Reference S19

Click here to access/download
Supplemental Material

McAda and Ryel 1999.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24263&guid=7049d3ab-4dec-4a20-a962-e3567a93de56&scheme=1


  

Reference S20

Click here to access/download
Supplemental Material

Melis 2011.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24264&guid=d43c46fc-ca6a-4cd9-b442-54bbd89f7acd&scheme=1


  

Reference S21

Click here to access/download
Supplemental Material

Miller 2018.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24266&guid=e25901a6-a0cc-4502-9597-5af91a612283&scheme=1


  

Reference S22

Click here to access/download
Supplemental Material

Miller 1961.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24265&guid=82cc6dbd-ea2b-4ee0-b4a2-bf09bb87f2e2&scheme=1


  

Reference S23

Click here to access/download
Supplemental Material

Minckley 1991.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24267&guid=50f5b5af-9818-457f-94b5-74b806d12d88&scheme=1


  

Reference S24

Click here to access/download
Supplemental Material

Mueller and Marsh 2002.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24268&guid=13d15d07-a00a-4451-9400-5e39d4f2df7d&scheme=1


  

Reference S25

Click here to access/download
Supplemental Material

Muth et al. 2000.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24269&guid=39c462ef-cbc3-45d8-a9dd-bcb6ad1817e5&scheme=1


  

Reference S26

Click here to access/download
Supplemental Material
Osmundson 1999.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24270&guid=f44c5b0d-8ab8-45cd-8470-6320f2a61a12&scheme=1


  

Reference S27

Click here to access/download
Supplemental Material
Osmundson 2014.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24271&guid=e445a6ba-9182-4bc4-8d14-aabcb28a2528&scheme=1


  

Reference S28

Click here to access/download
Supplemental Material

Quartarone and Young 1995.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24272&guid=49396d89-fec0-420f-ac85-fb7a6c437d20&scheme=1


  

Reference S29

Click here to access/download
Supplemental Material

Ryden 2000.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24273&guid=232f101d-1c0b-4132-9276-c7ebe813792a&scheme=1


  

Reference S30

Click here to access/download
Supplemental Material
Schmidt et al. 2016.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24274&guid=4af4b563-3ea3-4fc8-8533-685e6f30ecff&scheme=1


  

Reference S31

Click here to access/download
Supplemental Material
Snyder et al. 2016.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24275&guid=8a2fabf2-c36d-45a4-bbce-523f2beb73a5&scheme=1


  

Reference S32

Click here to access/download
Supplemental Material

USDOI 2007.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24276&guid=d2ac4599-5c59-4af9-ba9d-7f74b66e039e&scheme=1


  

Reference S33

Click here to access/download
Supplemental Material

USFWS 2002.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24277&guid=22ce5a47-690f-400b-a0f5-10ffce7a432e&scheme=1


  

Reference S34

Click here to access/download
Supplemental Material

USFWS 2018.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24278&guid=e9d62b6b-996b-4418-a9f2-b2255c8b9919&scheme=1


  

Reference S35

Click here to access/download
Supplemental Material

USFWS 2020a.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24279&guid=bd620fa8-e15c-44b4-8864-01c9a4e906cf&scheme=1


  

Reference S36

Click here to access/download
Supplemental Material

USFWS 2020b.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24280&guid=d4bc16c1-5f68-4b72-bce2-e5c88fc93acd&scheme=1


  

Reference S37

Click here to access/download
Supplemental Material

Van Haverbeke et al. 2020.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24281&guid=6afa64cd-2295-463f-bf6a-380a177a771d&scheme=1


  

Reference S38

Click here to access/download
Supplemental Material

Vanicek 1967.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24282&guid=9149761a-25ae-45c9-8e7c-31a884d57c05&scheme=1


  

Reference S39

Click here to access/download
Supplemental Material

Voichick and Wright 2007.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24283&guid=08359410-01b5-4812-bbce-a646a9bcd886&scheme=1


  

Reference S40

Click here to access/download
Supplemental Material
Webb et al. 2000.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24284&guid=573a7c1c-8b68-49c2-a008-c33bd5449d21&scheme=1


  

Reference S41

Click here to access/download
Supplemental Material

Wick et al. 1983.pdf

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=24285&guid=a94b4189-136a-4f8b-854e-c7536bfd35b0&scheme=1


  

Response to Reviewers.

Click here to access/download
Response to Reviewers.

JFWM Response to Reviewers.docx

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jfw

m
/article-pdf/doi/10.3996/JFW

M
-22-031/3213169/jfw

m
-22-031.pdf by guest on 13 June 2023

https://www.editorialmanager.com/jfwm/download.aspx?id=25270&guid=df8c340e-7caf-4644-9107-40fd43b3bafd&scheme=1

