Status of razorback sucker in Lakes Mohave and Mead: A conservation genetic perspective

Thomas E. Dowling
Paul C. Marsh
Thomas F. Turner
Brian R. Kesner

Funded by:

Background

- Endemic to Colorado River system
- Formerly very abundant in main channels throughout the drainage
- Most abundant in Lake Mohave
- Highest genetic diversity
- Serves as a refuge
- Lake Mead
- Evidence for recruitment

History of population declines

- Reservoirs fill
- Populations expand
- Introduction of non-native species
- Failure to recruit
- Populations senesce and disappear
- Demise hastened by large predators

Impact on genetic diversity

- Genetic diversity decreases with population size
- Can have negative effects on health of population (e.g., inbreeding depression)
- Can be used to monitor population size

Objective

- Use molecular markers (microsatellites, mtDNA) to monitor levels of genetic diversity in Lakes Mohave and Mead

Lake Mead

- Essentially extirpated in the 1970 s
- Re-appeared in late 1980 s - early 1990s
- Unlike other locations subadults have been found
- Goal
- Assess patterns of genetic variation

What's happening in Lake Mead?

Sample ID	Year	Sample Size	
		Adults	Larvae
FMS	2013	25	
Mohave	2000/2011	50	120
Mead - unknown	early 90s	15	
	2013	2	
	2014	6	
Colorado River Inlet	2011	4	
	2012	16	
	2013	3	
	2014	7	8
Echo Bay	1997		25
	2002	11	30
	2011	8	
	2012	45	25
	2013	6	7
	2014	14	10
Las Vegas Bay	2002	18	27
	2012		25
	2013	3	40
	2014	8	23
Overton Arm	2011	3	
	2013	38	30
	2014	32	10

- Change in sampling
- Hiatus between 2002 and 2011
- Additional locations after 2011

Relatedness

- Higher than original measure from Lake Mead and Lake Mohave
- Reduced in 2014 (relative to 2011-13)

What about variation among populations?

Assignment testing

- Identified three forms
- Flannelmouth
- Mead specific form
- Broadly distributed form (including Mohave)

Assignment testing

- Hybrids most common in the CRI
- Mead specific form (A) most common in EB and OA

Assignment testing

- Hybrids found in larvae from CRI in 2014
- Mead RBS most common in OA

Similarity of samples

Conclusions Lake Mead

- RBS in Lake Mead diverging from Lake Mohave
- Impact of drift due to small population size?
- As exemplified by flannelmouth-razorback hybrids, increased influx from Grand Canyon?
- Other geographic effects?
- Because of reduced genetic diversity and change in the population, should augment with Mohave stock to preserve existing Mead variation

Lake Mohave Conservation plan

- Initiated in mid-1990's
- Capture naturally produced larvae
- across regions
- throughout the spawning season
- Monitor variation in these samples

Hoover (Boulder) Dam

Sampling

- 18 years worth of data!!!
- Larvae (1997-2014)
- 315 collections, 7751 individuals
- Temporally and geographically dispersed
- Adults
- 305 wild fish
- 1277 repatriates (stocked 1992 - 2014)

Genetic variation within larval samples

 over time- microsatellites

$$
R^{2}=0.101, P=0.186
$$

- mtDNA

$$
R^{2}=0.724, P<0.001
$$

- Allelic richness is being maintained or increased over time

Genetic variation within repatriates over time (stocking cohorts)

- microsatellites

$$
R^{2}=0.100, P=0.169
$$

- mtDNA

$$
R^{2}=0.067, P=0.259
$$

- Allelic richness is maintained over time

Distribution of mtDNA variation among larvae, wild adults, and repatriates

SOURCE

Among samples
$F_{\text {ST }}=0.006$
Among samples within life stages
$F_{s c}=0.005$
Among larvae, wild adults, repatriates
$F_{C T}=\mathbf{- 0 . 0 0 1}$

No differences among larvae, repatriates, and wild adults!

Conclusions: Lake Mohave

- All measures of genetic variation consistent among samples of larvae and repatriates
- Variation is being transmitted from larvae to repatriates
- Increasing levels of mtDNA variation over time

We still have a problem!!!

- Despite all of our efforts, population size continues to be an issue
- Problem - ability to maintain genetic variation is constrained by population size
- This will lead to a loss of variation, resulting in decreased adaptability and potential issues with inbreeding

Major Issues Riverine population

- Stocking has established a population of at least as many fish in the riverine stretch above the basin
- Because of limited movement, riverine fish contribute little to reproduction
- As it stands, this is a wasted resource
- How do we incorporate these fish into the reproductive population?
- Is this feasible? If not, should stop stocking in the river

Major Issues Stocking size

- Size at stocking is critically important
-45 cm fish having a survival rate an order of magnitude higher than 35 cm fish

Major Issues Stocking size

- Makes more sense (biologically and economically) to stock larger fish!
- Therefore, we need to make a concerted effort to get this done!

