Status of razorback sucker in Lakes Mohave and Mead: A conservation genetic perspective

Thomas E. Dowling Paul C. Marsh Thomas F. Turner Brian R. Kesner

Funded by:

Background

- Endemic to Colorado River system
 - Formerly very abundant in main channels throughout the drainage
- Most abundant in Lake Mohave
 - Highest genetic diversity
 - Serves as a refuge
- Lake Mead
 - Evidence for recruitment

History of population declines

- Reservoirs fill
 - Populations expand
- Introduction of non-native species
 - Failure to recruit
 - Populations senesce and disappear
 - Demise hastened by large predators

Impact on genetic diversity

- Genetic diversity decreases with population size
 - Can have negative effects on health of population (e.g., inbreeding depression)
 - Can be used to monitor population size

Objective

 Use molecular markers (microsatellites, mtDNA) to monitor levels of genetic diversity in Lakes Mohave and Mead

Lake Mead

- Essentially extirpated in the 1970s
- Re-appeared in late 1980s early 1990s
 Unlike other locations subadults have been found
- Goal
 - Assess patterns of genetic variation

What's happening in Lake Mead?

			Sample Size		
	Sample ID	Year	Adults	Larvae	
	FMS	2013	25		
	Mohave	2000/2011	50	120	
N.	Mead - unknown	early 90s	15		
		2013	2		
		2014	6		
	Colorado River Inlet	2011	4		
		2012	16		
		2013	3		
		2014	7	8	
	Echo Bay	1997		25	
		2002	11	30	
		2011	8		
		2012	45	25	
		2013	6	7	
		2014	14	10	
	Las Vegas Bay	2002	18	27	
		2012		25	
		2013	3	40	
		2014	8	23	
	Overton Arm	2011	3		
		2013	38	30	
		2014	32	10	

 Change in sampling

 Hiatus between 2002 and 2011
 Additional locations after 2011

Relatedness

- Higher than original measure from Lake Mead and Lake Mohave
- Reduced in 2014 (relative to 2011-13)

What about variation among populations?

Assignment testing

- Identified three forms
 - Flannelmouth
 - Mead specific form
 - Broadly distributed form (including Mohave)

Assignment testing

Hybrids most common in the CRI

Mead specific form (A) most common in EB and OA

Assignment testing

- Hybrids found in larvae from CRI in 2014
- Mead RBS most common in OA

Similarity of samples

Conclusions Lake Mead

- RBS in Lake Mead diverging from Lake Mohave
 - Impact of drift due to small population size?
 - As exemplified by flannelmouth-razorback hybrids, increased influx from Grand Canyon?
 - Other geographic effects?
- Because of reduced genetic diversity and change in the population, should augment with Mohave stock to preserve existing Mead variation

Lake Mohave Conservation plan

- Initiated in mid-1990's
- Capture naturally produced larvae
 - across regions
 - throughout the spawning season
 - Monitor variation in these samples

Sampling

- 18 years worth of data!!!
- Larvae (1997-2014)
 - 315 collections, 7751 individuals
 - Temporally and geographically dispersed
- Adults
 - 305 wild fish
 - 1277 repatriates (stocked 1992 2014)

Genetic variation within larval samples over time

microsatellites

 $R^2 = 0.101, P = 0.186$

- mtDNA $R^2 = 0.724, P < 0.001$
- Allelic richness is being maintained or increased over time

Genetic variation within repatriates over time (stocking cohorts)

- microsatellites
 - $R^2 = 0.100, P = 0.169$
- mtDNA

 $R^2 = 0.067, P = 0.259$

 Allelic richness is maintained over time

Distribution of mtDNA variation among larvae, wild adults, and repatriates

SOURCE	
--------	--

Among samples $F_{ST} = 0.006$ Among samples within life stages $F_{SC} = 0.005$ Among larvae, wild adults, repatriates $F_{CT} = -0.001$

No differences among larvae, repatriates, and wild adults!

Conclusions: Lake Mohave

- All measures of genetic variation consistent among samples of larvae and repatriates
- Variation is being transmitted from larvae to repatriates
- Increasing levels of mtDNA variation over time

We still have a problem!!!

- Despite all of our efforts, population size continues to be an issue
- Problem ability to maintain genetic variation is constrained by population size

 This will lead to a loss of variation, resulting in decreased adaptability and potential issues with inbreeding

Major Issues Riverine population

- Stocking has established a population of at least as many fish in the riverine stretch above the basin
- Because of limited movement, riverine fish contribute little to reproduction
- As it stands, this is a wasted resource
- How do we incorporate these fish into the reproductive population?
 - Is this feasible? If not, should stop stocking in the river

Major Issues Stocking size

- Size at stocking is critically important
 - 45 cm fish having a survival rate an order of magnitude higher than 35 cm fish

Major Issues Stocking size

 Makes more sense (biologically and economically) to stock larger fish!

 Therefore, we need to make a concerted effort to get this done!