History of Humpback chub research –part 1

History of Humpback chub research – part 2

Juvenile Chub N Natal Origins	1onitoring /	HBC populatio for LCR aggreg integrating LCI data suggest la population – to emigration dea Estimates play role in delistin	n estimates ation R and JCM arger emporary alt with. significant g.	JCM data used impacts of wate temperature ar HBC juvenile su growth and lon abundance.	to estimate er nd RBT on rvival and g-term HBC		Combine LCR HI native fish elsev projects into a s – then cut by 25	BC and vhere single project 5%.	ish – beginn western GC by integratin aggregation estimates of	ing to estimate wide abundance ng JCM-west and data. First Fvital rates.
	2012ish		2000s-2010s		2018		B	20	19ish	
2012–2	2012–2016		-2014	2018		2018-2020 TWP		2022		
	NSE/JCM show that fall steady flows did not have huge impact.		suggestion th experiment w figure out imp trout and wat temperature	at a 20-year vas needed to pact of rainbow ter on HBC	Beginning of Begin to inte into sampling	JCM grate g des	I-west. e antenna sign.	Estimate effe chute falls tra using mark-r data being co LCR	ectiveness of anslocation ecap analysis of ollected around	

Compliance (ESA, LTEMP ROD)

- G.1 (Humpback chub modeling)
- G.2 (USFWS lower LCR)
- G.3 (Juvenile chub monitoring [JCM] East)
- G.7 (Chute Falls translocations)

Metrics

- G.1 (Humpback chub modeling)
- G.2 (USFWS lower LCR)
- G.3 (Juvenile chub monitoring [JCM] East)
- G.5 (HBC aggregations)
- G.6 (JCM West)

Fiscal Year 2025										
Project G Humpback Chub Population Dynamics throughout the Colorado River Ecosystem	Salaries	Travel & Training	Operating Expenses	Logistics Expenses	Cooperative Agreements	To other USGS Centers	Burden	Total		
							14.00%			
G.1. Humpback chub population modeling	\$156,134	\$8,000	\$5,000	\$0	şo	so	\$23,679	\$192,813		
G.2. Annual spring/fall HBC abundance estimates in the lower 13.6 km of the LCR	\$4,809	so	\$20,222	\$102,192	\$415,090	\$0	\$30,264	\$572,577		
G.3. Juvenile chub monitoring near the LCR confluence (JCM- East)	\$191,807	\$1,000	\$26,156	\$298,271	\$0	\$0	\$72,413	\$589,647		
G.4. Remote PIT-tag array monitoring in the LCR	\$22,557	\$0	\$4,500	\$5,000	\$0	\$0	\$4,488	\$36,545		
G.5. Monitoring humpback chub aggregation relative abundance and distribution	\$3,615	\$0	\$12,436	\$79,366	\$142,984	\$0	\$17,648	\$256,049		
G.6. Juvenile chub monitoring - Western Grand Canyon (JCM- West)	\$95,321	\$1,000	\$29,836	\$171,400	\$0	\$0	\$41,658	\$339,215		
G.7. Chute Falls translocations	\$0	\$0	\$930	\$15,877	\$82,649	\$0	\$4,832	\$104,288		
G.8. Sampling of springs in the										
upper LCR		÷	2020	-220,330			21,010			
G.9. Movement in western Grand Canyon from system-wide antenna monitoring	\$10,946	\$0	\$40,000	\$0	\$0	\$0	\$7,132	\$58,079		
Total Project G	\$485,189	\$10,000	\$139,700	\$693,042	\$694,963	\$0	\$206,759	\$2,229,653		

			Fiscal Ye	ar 2026				
Project G Humpback Chub Population Dynamics throughout the Colorado River Ecosystem	Salaries	Travel & Training	Operating Expenses	Logistics Expenses	Cooperative Agreements	To other USGS Centers	Burden	Total
							14.50%	
G.1. Humpback chub population modeling	\$167,063	\$8,000	\$5,000	\$0	so	\$0	\$26,109	\$206,173
G.2. Annual spring/fall HBC abundance estimates in the lower 13.6 km of the LCR	\$5,145	\$0	\$18,672	\$105,220	\$421,215	\$0	\$31,347	\$581,599
G.3. Juvenile chub monitoring near the LCR confluence (JCM- East)	\$205,683	\$1,000	\$26,156	\$308,295	\$0	\$0	\$78,464	\$619,598
G.4. Remote PIT-tag array monitoring in the LCR	\$24,136	\$0	\$4,500	\$5,000	so	so	\$4,877	\$38,514
G.5. Monitoring humpback chub aggregation relative abundance and distribution	\$3,868	\$0	\$13,986	\$104,859	\$184,416	\$ 0	\$23,326	\$330,456
G.6. Juvenile chub monitoring - Western Grand Canyon (JCM- West)	\$102,118	\$1,000	\$29,836	\$177,153	\$0	\$ 0	\$44,966	\$355,072
G.7. Chute Falls translocations	\$0	\$0	\$930	\$16,347	\$83,697	\$0	\$5,016	\$105,990
G.8. Sampling of springs in the								
upper LCR	00		, ,	÷,		 	20	
G.9. Movement in western Grand Canyon from system-wide antenna monitoring	\$11,712	\$0	\$15,000	\$0	SO	\$0	\$3,873	\$30,586
Total Project G	\$519,726	\$10,000	\$114,080	\$716,874	\$689,328	\$0	\$217,978	\$2,267,987

Fiscal Year 2027									
Project G Humpback Chub Population Dynamics throughout the Colorado River Ecosystem	Salaries	Travel & Training	Operating Expenses	Logistics Expenses	Cooperative Agreements	To other USGS Centers	Burden	Total	
							15.00%		
3.1. Humpback chub population modeling	\$178,758	\$8,000	\$5,000	\$0	\$0	\$0	\$28,764	\$220,521	
3.2. Annual spring/fall HBC abundance estimates in the ower 13.6 km of the LCR	\$5,505	\$0	\$18,672	\$108,272	\$427,461	\$0	\$32,691	\$592,602	
3.3. Juvenile chub monitoring near the LCR confluence (JCM- East)	\$220,081	\$1,000	\$26,156	\$318,373	şo	\$0	\$84,841	\$650,451	
3.4. Remote PIT-tag array monitoring in the LCR	\$25,826	\$0	\$4,500	\$5,000	\$0	\$0	\$5,299	\$40,625	
3.5. Monitoring humpback chub aggregation relative abundance and distribution	\$4,139	\$0	\$12,436	\$84,512	\$147,083	\$0	\$19,576	\$267,746	
3.6. Juvenile chub monitoring - Nestern Grand Canyon (JCM- Nest)	\$109,266	\$1,000	\$29,836	\$182,936	so	\$0	\$48,456	\$371,494	
3.7. Chute Falls translocations	\$0	\$0	\$930	\$16,820	\$84,764	\$0	\$5,205	\$107,720	
3.8. Sampling of springs in the	<u>^</u>		60	<u>co</u>		<u>co</u>	<u>ea</u>	60	
upper LCR									
3.9. Movement in western Grand Canyon from system-wide	\$12,532	şo	\$15,000	\$0	şo	\$ 0	\$4,130	\$31,662	
Total Project G	\$556,107	\$10,000	\$112,530	\$715,913	\$659,309	\$0	\$228,962	\$2,282,821	

- Is there data that does not need annual collection?
 - I don't think so this would lead to very imprecise estimates
- Can monitoring trips be combined with others?
 - G.5 does include an extra boat for seining (replacing the seining trip)
 - Same trip samples JCM-East & JCM-West (G.3 & G.6)
- If we had to cut 10% or 15%:
 - Reduction in trips would cause loss of precision in abundance, survival, and growth estimates.
 - Probably would shorten mainstem trips, reduce to 1 camp for June/July LCR trip, and maybe drop a LCR fall trip.
 - Could try to offset by cutting salary for analysis, reduce scope of modelling, and find outside work.