The HFE Page

From Glen Canyon Dam AMP
Jump to: navigation, search


Glen Canyon Dam spill.gif

BeachErosion.JPG

High-Flow Experimental (HFE) Releases

Purpose and Goal

The purpose of HFEs is to determine if sandbar building during HFEs exceeds sandbar erosion during periods between HFEs, such that sandbar size can be increased or maintained over several years.

LTEMP HFE Protocol

As described in the LTEMP ROD, HFEs are experimental in nature and are designed to achieve a better understanding of whether, how, and when to incorporate high releases into future dam operations in a manner that maintains or improves beaches, sandbars, and associated habitat. The LTEMP HFE Protocol establishes a decision-making framework consisting of three components: (1) planning and budgeting, (2) modeling, and (3) decision and implementation.

Under the LTEMP, HFE releases are restricted to limited periods of the year when the highest volumes of sediment are most likely available for building sandbars. Sediment-triggered HFEs may be made in spring (March or April) or fall (October or November; Figure 1). Fall extended-duration HFEs range from greater than 96 hr to 250 hr. Spring and fall HFEs that are not extended-duration range from less than 1 hr to 96 hr. Proactive HFEs may be implemented in spring or early summer (April, May or June), and have a duration range up to 24 hr. HFE magnitudes range from 31,500 cubic feet per second (cfs) to 45,000 cfs. The frequency of HFEs is determined by tributary sediment inputs, annual release volumes, resource conditions, and decisions of the Department. Extended-duration fall HFEs are limited to a frequency of 4 times total in the 20-year LTEMP period.

HFE Sand Budget Model

The LTEMP HFE Protocol uses predictive models to make recommendations for the magnitude and duration of potential HFEs using real-time measurements and models of sand inflow from the Paria River and forecasted hydrologic data to determine whether suitable sediment and hydrology conditions exist for a high-flow experimental release.

A sand transport/budget model (Wright et al. 2010) was used to predict the mass of sand that would be transported by an HFE and to estimate if a proposed HFE would transport more or less sand than had been delivered from the Paria River to the Colorado River during the fall accounting period (July 1 to November 30). Only HFE durations that resulted in a “positive sand balance” were considered. Output of the modeling runs provides the initial recommendation for the magnitude and duration of the HFE. However, because modeling only considers a simple range of possible HFE peak magnitudes and durations, the Protocol includes a review of the model output that may modify the recommended HFE to benefit relevant resources. (2018 HFE Tech Team Report)

--- --- ---

LTEMP Experimental Action: Sediment-Related Experimental Treatments (Table 2-2, pages 11-12) [1]

Sediment-Triggered Spring HFEs

  • Sediment accounting period: Dec-Jun
  • HFE window: Mar-Apr
  • Up to 96 hrs
  • Could begin after the first two years of LTEMP (start spring 2020),
  • Not in the same water year as an extended-duration (>96 hr) fall HFE

Proactive Spring HFEs

  • Triggered by an annual release volume over 10.0 maf
  • HFE window: Apr-Jun
  • Up to 24 hrs
  • Not in the same water year as a sediment-triggered spring HFE or an extended-duration (>96 hr) fall HFE

Sediment-Triggered Fall HFEs

  • Sediment accounting period: Jul-Nov
  • HFE window: Oct-Nov
  • Up to 96 hrs

Extended-Duration Fall HFEs

  • Sediment accounting period: Jul-Nov
  • HFE window: Oct-Nov
  • Up to 250 hrs
  • The first test would be limited to 192 hrs
  • No more than four during the 20-year LTEMP period

Updates

Sandbar volume 1990-2018
Rate of post-HFE beach erosion
HFE windows.jpg
HFE types.JPG
HFE decision tree.jpg
px500
px500

Links and Information

Glen Canyon Dam Flow Experiments

Presentations and Papers

2023

2022

2021

2020

2019

2018

2017

2016

2014

2013

2012

2011

2010

2009

1997

1996

2019 HFE Workshop

In lieu of the motion by Recreational Fishing representatives proposed for this meeting, GCMRC has agreed to:

(1) conduct a scientific assessment of the effects of past experimental high flows (including powerplant capacity flows) at Glen Canyon Dam on high valued resources of concern to the GCDAMP (i.e., recreational beaches, aquatic food base, rainbow trout fishery, hydropower, humpback chub and other native fish, and cultural resources); and

(2) present initial findings in a written summary at the 2019 Annual Reporting Meeting and the March 2019 AMWG meeting for review and discussion.

A next step would be for GCMRC to identify experimental flow options that would consider high valued resources of concern to the GCDAMP (defined above), fill critical data gaps, and reduce scientific uncertainties. [2]

2015 HFE Synthesis Workshop

2010 HFE Workshop

2011 HFE Protocol EA

Power Plant Capacity Flow Tests

  • Habitat Maintenance Flow (HMF) – September 1997
  • Low Summer Steady Flow: April – September 2000; Included two powerplant-capacity flows, one in May and one in September
  • California power emergencies 2000 - 2001: Included six powerplant capacity flows

HFEs and the Colorado River Basin Project Act of 1968

One area that has been a source of recent discussion has been the question of planned high releases from Glen Canyon Dam for such purposes as "beach habitat building flows." The Department expects the AMWG to work and provide its recommendations within the following context. Since the GCPA is clear that it was not intended to modify the compacts or "the provisions of the Colorado River Storage Project Act of 1956 and the Colorado River Basin Project Act of 1968 that govern allocation, appropriation, development, and exportation of the waters of the Colorado River Basin" (GCPA, section 1802(b)), any operational changes under the auspices of the GCPA are clearly subordinate to and must fit within the constraints of those provisions. Historically, there have been differences of legal opinion over some related issues, such as whether releases of water above power plant capacity, if made for authorized purposes, can be considered as not constituting "spills" within the meaning of section 602(a) of the Colorado River Basin Project Act of 1968 and the Operating Criteria implemented pursuant to section 602, and more recently over whether the GCPA "amends" existing law by adding additional authorized purposes for the operation of Glen Canyon Dam. These legal issues have not been finally resolved, but given the limitations provided in the ROD, the Glen Canyon Dam operating criteria, and the 1996 agreement between the Department and the Basin States, it is believed that they have been adequately addressed. [3]

Other Stuff

Calculating the Cumulative Sand Load for an HFE

  1. Determine the amount of sand that has come in from the Paria River during the HFE Accounting Period you are interested in. Go to the Paria River gage at Lees Ferry and check the Cumulative Sand Load box and enter the dates of the HFE Accounting Period.
  2. Determine the amount of sand that has been transported out of Marble Canyon during the HFE accounting period by taking the lower bound value of the change in sand storage in Lower Marble Canyon and subtracting it from the lower bound value of the change in sand storage in Upper Marble Canyon.
  3. Subtract the amount of sand that has been transported out of Marble Canyon from the amount of sand that has come in from the Paria River and you get the amount of sand Reclamation uses for planning the HFE.

Calculating Magnitude and Duration of an HFE

Reclamation takes the amount of sand calculated above and subtracts the amount of sand that will be transported out of Marble Canyon between the time of the model run and the HFE. Reclamation then calculates the largest possible volume and duration release from the dam using the Scott Wright sediment transport model that does not result in a negative sand balance between the 30-mile gage and the LCR by the end of the accounting period.

How much water can be released at Glen Canyon Dam?

  • 8 generators = 31,500 cfs
  • 4 bypass tubes = 15,000 cfs
  • 2 spillways (require reservoir elevations above 3648') = up to 208,000 cfs

How often would an HFE be triggered? (LTEMP Appendix P)

  • Proactive Spring HFEs: 10% of years
  • Sediment-triggered Spring HFEs: 26% of years
  • Sediment-triggered Fall HFEs: 77% of years
  • Extended-Duration Fall HFEs: 25% of years