Difference between revisions of "FOOD BASE"

From Glen Canyon Dam AMP
Jump to: navigation, search
 
(14 intermediate revisions by the same user not shown)
Line 17: Line 17:
 
</table>
 
</table>
  
[[File:FoodbaseDiversity.jpg]]
+
[[File:FoodbaseModel.PNG|thumb|center|500px| https://www.usbr.gov/uc/progact/amp/twg/2022-01-13-twg-meeting/20220113-AnnualReportingMeeting-ProjectF-AquaticEcologyFoodBaseMonitoring-508-UCRO.pdf ]]
  
 
<!--
 
<!--
Line 25: Line 25:
 
=='''Aquatic Food Base monitoring below Glen Canyon Dam and into Grand Canyon'''==
 
=='''Aquatic Food Base monitoring below Glen Canyon Dam and into Grand Canyon'''==
  
Aquatic insects live in the water as larvae most of their lives, then emerge onto land for a brief period as winged adults. Sampling these emerged adults on land is therefore a useful tool for understanding the condition of the aquatic insect population that is in the water, particularly in large rivers where sampling the larvae on the river bed is impractical. Our group uses a variety of methods for collecting these emergent insects, which we sample principally in the Colorado River in Glen, Marble, and Grand Canyons and also in the Little Colorado River.
+
Aquatic insects live in the water as larvae most of their lives, then emerge onto land for a brief period as winged adults. Sampling these emerged adults on land is therefore a useful tool for understanding the condition of the aquatic insect population that is in the water, particularly in large rivers where sampling the larvae on the river bed is impractical. Aquatic insects have a terrestrial, winged adult life stage in which they leave the water and fly onto land in order to find a mate and reproduce. [https://www.usgs.gov/centers/sbsc/science/aquatic-insects?qt-science_center_objects=0#qt-science_center_objects]
 
+
Aquatic insects have a terrestrial, winged adult life stage in which they leave the water and fly onto land in order to find a mate and reproduce. Sampling insects at this terrestrial, adult life stage, rather than the more traditional larval, aquatic life stage, allows us to understand aquatic insect population patterns in ecosystems, such as large rivers, where sampling the aquatic larvae directly is unsafe or impractical. Our group samples these emergent adult insects primarily using sticky traps, a method we developed in-house. In the Little Colorado River, we are using these samples to understand the patterns of aquatic insect abundance throughout a river segment that is critically important to an endangered fish, the humpback chub (Gila cypha). Additionally, we collect samples monthly from Lees Ferry on the Colorado River downstream of Glen Canyon Dam to better understand patterns of food availability for recreationally-important rainbow trout (Oncorhynchus mykiss). We also deploy traps throughout the Colorado River in Grand Canyon to better understand patterns of insect movement in and out of tributaries, and to describe how insect abundance varies throughout this > 250 mile stretch of river and in response to operations from Glen Canyon Dam.
+
 
+
Sticky trap-based results from the Little Colorado River have underscored how aquatic insect abundance may be driving spatial patterns of humpback chub density and growth that are observed by cooperators at the US Fish and Wildlife Service, Arizona Game and Fish Department, and USGS. In Lees Ferry, seasonal patterns of emergent adult aquatic insects also correlate well with observed patterns of rainbow trout growth, with peaks in spring, and very low densities in winter. Thus, monitoring of insect abundance is a useful, early indicator of ecosystem health that can foretell future changes in fish population health and abundance. [https://www.usgs.gov/centers/sbsc/science/aquatic-insects?qt-science_center_objects=0#qt-science_center_objects]
+
  
 
==[http://gcdamp.com/index.php?title=Long-term_Experimental_and_Management_Plan_(LTEMP) '''LTEMP Resource Goal for the Aquatic Food Base''']==  
 
==[http://gcdamp.com/index.php?title=Long-term_Experimental_and_Management_Plan_(LTEMP) '''LTEMP Resource Goal for the Aquatic Food Base''']==  
Line 53: Line 49:
 
|style="color:#000;"|
 
|style="color:#000;"|
  
 +
[[File:NutrientsDrift.PNG|thumb|center|500px|Variable phosphorus release from Glen Canyon Dam controls tailwater food webs https://www.usbr.gov/uc/progact/amp/twg/2022-01-13-twg-meeting/20220113-AnnualReportingMeeting-pHRegulatesPhosphorusCyclingColoradoRiver-508-UCRO.pdf ]]
 
[[File:2017AR LCRbiomass.jpg|thumb|center|500px| https://www.usbr.gov/uc/rm/amp/twg/mtgs/17jan26/AR19_Kennedy.pdf ]]
 
[[File:2017AR LCRbiomass.jpg|thumb|center|500px| https://www.usbr.gov/uc/rm/amp/twg/mtgs/17jan26/AR19_Kennedy.pdf ]]
 
[[File:2017AR MidgeAbundance.jpg|thumb|center|500px| https://www.usbr.gov/uc/rm/amp/twg/mtgs/17jan26/AR19_Kennedy.pdf ]]
 
[[File:2017AR MidgeAbundance.jpg|thumb|center|500px| https://www.usbr.gov/uc/rm/amp/twg/mtgs/17jan26/AR19_Kennedy.pdf ]]
Line 117: Line 114:
 
|-
 
|-
 
|style="color:#000;"|
 
|style="color:#000;"|
 +
 +
'''2024'''
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2024-01-25-twg-meeting/20240125-AnnualReportingMeeting-ProjectFUpdateLeadDecompositionBatMonitoringAquaticInsects-508-UCRO.pdf Project F update: Lead decomposition, bat monitoring, aquatic insects ]
 +
 +
'''2023'''
 +
*[https://doi.org/10.1139/cjfas-2022-0229 Hansen et al., 2023, Linking ecosystem processes to consumer growth rates—Gross primary productivity as a driver of freshwater fish somatic growth in a resource-limited river: Canadian Journal of Fisheries and Aquatic Sciences]
 +
*[https://doi.org/10.1002/jwmg.22414 Metcalfe et al., 2023, Insectivorous bat foraging tracks the availability of aquatic flies (Diptera), The Journal of Wildlife Management]
 +
*[https://doi.org/10.1002/tafs.10381 Yard et al., 2023, Declines in prey production during the collapse of a tailwater rainbow trout population are associated with changing reservoir conditions: Transactions of the American Fisheries Society]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2023-01-26-twg-meeting/20230126-AnnualReportingMeeting-MolecularModelingToolsTrackingFoodBaseDynamicsChangingEnvironments-508-UCRO.pdf Molecular and modeling tools for tracking food base dynamics in changing environments]
 +
*[[Media:BAO_Approved-LHansen-Rev_Poster.pdf| A Decade of GPP Data in a Changing River]]
 +
*[[Media:Wehr-Wrey-Stevens_diatoms.pdf| Changes in epiphytic diatoms in the Colorado River downstream of Glen Canyon Dam following reduced flow variation]]
 +
 +
'''2022'''
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2022-02-10-amwg-meeting/20220210-ProjectF-AquaticEcologyFoodBaseMonitoring-508-UCRO.pdf Project F: Aquatic ecology and food base monitoring ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2022-01-13-twg-meeting/20220113-AnnualReportingMeeting-ProjectF-AquaticEcologyFoodBaseMonitoring-508-UCRO.pdf Project F: Aquatic ecology and food base monitoring ]
  
 
'''2021'''
 
'''2021'''
Line 125: Line 137:
  
 
'''2020'''
 
'''2020'''
 +
*[https://www.sryahwapublications.com/annals-of-ecology-and-environmental-science/pdf/v4-i2/1.pdf Stevens et al. 2020. Benthic discontinuity between an unregulated tributary and the dam-controlled Colorado River, Grand Canyon, Arizona. Annals of Ecology and Environmental Science.]
 
*[https://doi.org/10.1111/fwb.13617 Metcalfe et al., 2020, Net‐spinning caddisfly distribution in large regulated rivers: Freshwater Biology]
 
*[https://doi.org/10.1111/fwb.13617 Metcalfe et al., 2020, Net‐spinning caddisfly distribution in large regulated rivers: Freshwater Biology]
 
*[https://www.usbr.gov/uc/progact/amp/twg/2020-10-15-twg-meeting/20201015-ColoradoRiverAquaticFoodbaseStudiesTapeatsCreek-Presentation-508-UCRO.pdf Colorado River Aquatic Foodbase Studies at Tapeats Creek, Grand Canyon National Park, Arizona: A Benthic Discontinuity ]
 
*[https://www.usbr.gov/uc/progact/amp/twg/2020-10-15-twg-meeting/20201015-ColoradoRiverAquaticFoodbaseStudiesTapeatsCreek-Presentation-508-UCRO.pdf Colorado River Aquatic Foodbase Studies at Tapeats Creek, Grand Canyon National Park, Arizona: A Benthic Discontinuity ]

Latest revision as of 16:20, 22 August 2024


Aquatic Food Base monitoring below Glen Canyon Dam and into Grand Canyon

Aquatic insects live in the water as larvae most of their lives, then emerge onto land for a brief period as winged adults. Sampling these emerged adults on land is therefore a useful tool for understanding the condition of the aquatic insect population that is in the water, particularly in large rivers where sampling the larvae on the river bed is impractical. Aquatic insects have a terrestrial, winged adult life stage in which they leave the water and fly onto land in order to find a mate and reproduce. [1]

LTEMP Resource Goal for the Aquatic Food Base

No resource goal was identified for the aquatic food base. It was deemed more as "a means to an end" with regard to meeting goals for humpback chub, other native fish, and the rainbow trout fishery.

Desired Future Condition for the Aquatic Food Base

The aquatic food base will sustainably support viable populations of desired species at all trophic levels. Assure that an adequate, diverse, productive aquatic foodbase exists for fish and other aquatic and terrestrial species that depend on those food resources.

EPT.jpg
EPT as Biologic Indicators of Stream Condition
Chara.jpg
Algae and Aquatic Macrophytes
Macroinvertebrates.jpg
Aquatic Macroinvertebrates

Updates


Links and Information

Foodbase Projects

Oviposition and Egg Desiccation Studies

Foodwebs and Bioenergetics Studies

Measuring Primary Production in the Lees Ferry Reach

The BugFlow Experiment

Citizen Science Insect Monitoring

Hyporheic Anoxia in the Lees Ferry Reach

Downstream Recovery of the Foodbase Community in Several Colorado River Tailwaters

Drift and Food Availability Studies

Foodbase PEP

Papers and Presentations

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2003

2001

2000

1999

1998

1997

1994

1991

1990

1981

1959

Other Stuff

The interaction of fish, foodbase, and temperature

Fish occupying warmer water have higher metabolic demands than individuals in cooler water, and if these demands increase concurrently with a seasonal decline in prey availability, then growth rates may be reduced. [2]


  • Gammarus, blackflies, and midges fuel fish production below Glen Canyon Dam.
  • Blackflies and midges respond positively to spring HFE's. Gammarus show little response to fall or spring HFEs.
  • Mud Snails were introduced below Glen Canyon Dam around 1995.