Difference between revisions of "WATER QUALITY"

From Glen Canyon Dam AMP
Jump to: navigation, search
 
(24 intermediate revisions by the same user not shown)
Line 91: Line 91:
 
|style="color:#000;"|
 
|style="color:#000;"|
  
 +
*[http://gcdamp.com/index.php?title=Portal:GCDAMP_Knowlege_Assessments GCMRC Annual Reports page]
 
*[http://gcdamp.com/index.php?title=Nutrients Nutrients Page]
 
*[http://gcdamp.com/index.php?title=Nutrients Nutrients Page]
 
*[http://gcdamp.com/index.php?title=TEMPERATURE Temperature Page]
 
*[http://gcdamp.com/index.php?title=TEMPERATURE Temperature Page]
Line 107: Line 108:
 
|style="color:#000;"|
 
|style="color:#000;"|
  
 +
*[https://tableau.usgs.gov/views/colorado-river-water-quality-gcd/GlenCanyonDamSiteHourlyAverages?%3Aembed=y&%3AisGuestRedirectFromVizportal=y Glen Canyon Dam Site: Hourly Averages]
 
*[https://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09379901 Glen Canyon Dam near Page, AZ]
 
*[https://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09379901 Glen Canyon Dam near Page, AZ]
 
*[http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09380000 Colorado River at Lees Ferry]
 
*[http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09380000 Colorado River at Lees Ferry]
Line 112: Line 114:
 
*[http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09383100 Colorado River above Little Colorado River near Desert View, AZ]
 
*[http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09383100 Colorado River above Little Colorado River near Desert View, AZ]
 
*[https://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09402500 Colorado River near Grand Canyon, AZ]
 
*[https://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09402500 Colorado River near Grand Canyon, AZ]
*[http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09403000 Bright Angel Creek]
 
 
*[http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09404120 Colorado River above National Canyon near Supai, AZ]
 
*[http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09404120 Colorado River above National Canyon near Supai, AZ]
 
*[http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09404200 Colorado River above Diamond Creek near Peach Springs, AZ]
 
*[http://www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09404200 Colorado River above Diamond Creek near Peach Springs, AZ]
Line 120: Line 121:
 
|-
 
|-
 
|style="color:#000;"|
 
|style="color:#000;"|
 +
 +
'''2024'''
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2024-02-29-amwg-meeting/20240229-ImprovingLakePowellCEQUAL-W2WaterQualityModel-508-UCRO.pdf Improving the Lake Powell CEQUAL-W2 Water Quality Model ]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2024-02-29-amwg-meeting/20240229-WaterQuality-508-UCRO.pdf Water Quality ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2024-01-25-twg-meeting/20240125-TWGMeeting-WaterQualityConditionsLakePowell-508-UCRO.pdf Water Quality Conditions in Lake Powell and below Glen Canyon Dam ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2024-01-25-twg-meeting/20240125-AnnualReportingMeeting-DissolvedOxygenDynamicsLakePowellGlenCanyon-508-UCRO.pdf Dissolved Oxygen Dynamics in Lake Powell and Glen Canyon ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2024-01-25-twg-meeting/20240125-AnnualReportingMeeting-ImprovingLakePowellCE-QUAL-W2WaterQualityModel-508-UCRO.pdf Improving the Lake Powell CE-QUAL-W2 Water Quality Model ]
 +
 +
'''2023'''
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2023-11-08-twg-meeting/20231108-WaterQualityConditionsLakePowell-508-UCRO.pdf Water Quality Conditions in Lake Powell and below Glen Canyon Dam]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2023-11-08-twg-meeting/20231108-BasinHydrologyOperationsWaterQuality-508-UCRO.pdf Basin Hydrology, Operations and Water Quality]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2023-11-08-twg-meeting/20231108-GlenCanyonDamAirInjectionTestingSeptember2023-508-UCRO.pdf Glen Canyon Dam Air Injection Testing September 2023]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2023-08-17-amwg-meeting/20230817-EffectsLowDissolvedOxygenHighTemperatureTroutFishery-508-UCRO.pdf Effects of Low Dissolved Oxygen and High Temperature on the Trout Fishery]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2023-06-15-twg-meeting/20230615-BasinHydrologyOperationsWaterQuality-508-UCRO.pdf Basin Hydrology, Operations, and Water Quality]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2023-01-26-twg-meeting/20230126-AnnualReportingMeeting-PredictingWaterQualityLakePowell-508-UCRO.pdf Predicting Water Quality in Lake Powell: Updates and Improvements to the Existing Mechanistic Model ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2023-01-26-twg-meeting/20230126-AnnualReportingMeeting-DissolvedOxygenDynamicsLakePowellGlenCanyonTailwater-508-UCRO.pdf Dissolved Oxygen Dynamics in Lake Powell and in the Glen Canyon Tailwater]
 +
 +
'''2022'''
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2022-10-13-twg-meeting/20221013-WaterQualitySynthesisUpdate-508-UCRO.pdf Water Quality Synthesis Update ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2022-10-13-twg-meeting/20221013-BasinHydrologyOperationsWaterQuality-508-UCRO.pdf Basin Hydrology, Operations and Water Quality ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2022-10-13-twg-meeting/20221013-LowDissolvedOxygenReleasesCurrentState-of-Practice-TechnicalReport-UCRO.pdf Low Dissolved Oxygen in Releases: Current State-of-Practice - Technical Report No. ENV-2022-61 ]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2022-08-18-amwg-meeting/20220818-DissolvedOxygenState-of-PracticeStudy-508-UCRO.pdf Dissolved Oxygen State-of-Practice Study ]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2022-08-18-amwg-meeting/20220818-BasinHydrologyOperationsWaterQuality-508-UCRO.pdf Basin Hydrology, Operations and Water Quality ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2022-06-16-twg-meeting/20220616-BasinHydrologyOperationsWaterQuality-508-UCRO.pdf Basin Hydrology, Operations and Water Quality ]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2022-02-10-amwg-meeting/20220210-BasinHydrologyWaterQualityOperations-508-UCRO.pdf Basin Hydrology, Water Quality, and Operations ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2022-04-13-twg-meeting/20220413-BasinHydrologyOperationsWaterQuality-Presentation-508-UCRO.pdf Basin Hydrology, Operations, and Water Quality ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2022-04-13-twg-meeting/20220413-LakePowellWaterQualityMarch2021-March2022-508-UCRO.pdf Lake Powell Water Quality March 2021-March 2022 ]
 +
 +
'''2021'''
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2021-10-14-twg-meeting/20211014-UpdateGlenCanyonDamLakePowellDissolvedOxygenState-of-PracticeProject-Presentation-508-UCRO.pdf Update on the Glen Canyon Dam/Lake Powell Dissolved Oxygen State-of-Practice Project]
  
 
'''2020'''
 
'''2020'''
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2020-06-24-twg-meeting/20200624-MetalimnionLowDissolvedOxygenEventsLakePowell-508-UCRO.pdf Metalimnion low dissolved oxygen events in Lake Powell and their transport downstream of Glen Canyon Dam ]
 +
*[https://doi.org/10.1002/lno.11399 Deemer et al., 2020, Calcite precipitation in Lake Powell reduces alkalinity and total salt loading to the Lower Colorado River Basin: Limnology and Oceanography  ]
 
*[https://www.usbr.gov/uc/progact/amp/twg/2020-01-13-twg-meeting/20200113-AnnualReportingMeeting-DissolvedOxygenDownstreamGlenCanyonDam2019-Presentation-508-UCRO.pdf Dissolved Oxygen Downstream of Glen Canyon Dam, 2019 ]
 
*[https://www.usbr.gov/uc/progact/amp/twg/2020-01-13-twg-meeting/20200113-AnnualReportingMeeting-DissolvedOxygenDownstreamGlenCanyonDam2019-Presentation-508-UCRO.pdf Dissolved Oxygen Downstream of Glen Canyon Dam, 2019 ]
 
*[https://www.usbr.gov/uc/progact/amp/twg/2020-01-13-twg-meeting/20200113-AnnualReportingMeeting-LakePowellRegulatorDownstreamWaterQualityEcosystemProductivity-Presentation-508-UCRO.pdf Lake Powell as a Regulator of Downstream Water Quality and Ecosystem Productivity ]
 
*[https://www.usbr.gov/uc/progact/amp/twg/2020-01-13-twg-meeting/20200113-AnnualReportingMeeting-LakePowellRegulatorDownstreamWaterQualityEcosystemProductivity-Presentation-508-UCRO.pdf Lake Powell as a Regulator of Downstream Water Quality and Ecosystem Productivity ]

Latest revision as of 10:33, 23 August 2024


ForebayWaterQuality.jpg

Desired Future Condition for Water Quality

Water quality with regards to dissolved oxygen, nutrient concentrations and cycling, turbidity, temperature, etc., is sufficient to support natural ecosystem functions, visitor safety and visitor experience to the extent feasible and consistent with the life history requirements of focal aquatic species.
• Ecosystem-sustaining nutrient distribution, flux, and cycling.
• Hydro-physical conditions and characteristics of the CRE necessary to sustain aquatic biota.
• Acceptable water quality for human health and visitor experience.

---
---
---

Updates

WQ field parameters measured monthly at forebay and quarterly throughout reservoir

  • Depth
  • Temperature
  • Dissolved Oxygen
  • pH
  • Conductivity / TDS
  • ORP
  • Turbidity
  • Chl a
  • Secchi Depth
  • Meteorological Information

WQ samples sent for lab analysis

  • Major ions
  • pH
  • Conductivity
  • TDS, roe & soc
  • TSS
  • Alkalinity
  • DOC
  • OP
  • TP
  • NH3-N
  • NO3+NO2-N
  • TN
  • Chl
  • Phytoplankton / Zooplankton
  • Metals (once per year, UT)


Links and Information

Water Quality PEP Reviews

Water Quality Gages

Papers and presentations

2024

2023

2022

2021

2020

2018

2017

2016

2015

2014

2012

2010

2009

2006

2005

Modifying releases at Glen Canyon Dam to improve water quality in the Lees Ferry reach

Rough operation of the turbines

Increases the oxygenation of water going through the power plant Is damaging to the turbines

Oxygenation of the tailwater using the bypass tubes

The Basin States have maintained that according to Sec 602a of the Colorado River Basin Project Act (1968), the bypass tubes at Glen Canyon Dam can only be used to avoid anticipated spills from Lake Powell. The Basin States have agreed to bypass at Glen Canyon Dam for HFEs on the condition that it be done as part of an experiment and not a management action or operational decision. Costs associated with any release that bypasses the powerplant for reasons other than to avoid a spill or for experimentation relating to HFEs would have to be borne by the GCDAMP (see DOI determination for costs of the 2004 BHBF).

Adding power generation to the bypass tubes

Allows for drawing water from deeper in Lake Powell where colder and more oxygenated water may be present.

Other methods:

  • Forebay diffusers
  • Side stream super-saturation
  • Aeration
  • Turbine venting
  • Surface water pumps (impellers)

(Mobley Engineering: Hydropower Enhancement Technologies)

Other Stuff