|
|
Line 30: |
Line 30: |
| | | |
| '''Location and Habitat:''' | | '''Location and Habitat:''' |
− | Found in most warm water lakes and streams in Arizona and even in a few trout lakes in the White Mountains and Mogollon Rim. Prefer lakes with rocky substrate and piles of rubble, but can be in slow moving rivers and riverine backwaters. [http://www.nwrc.usgs.gov/wdb/pub/hsi/hsi-015.pdf Green sunfish have been found at a wide range of stream gradients, varying from 0.2 to 5.7 m/km; however, they are most abundant at lower (<2 m/km) gradients. They prefer small to medium-sized (<30 m width) streams.] | + | Found in most warm water lakes and streams in Arizona. Prefer lakes with rocky substrate and piles of rubble, but can be found in slow moving rivers and riverine backwaters. [http://www.nwrc.usgs.gov/wdb/pub/hsi/hsi-015.pdf Green sunfish have been found at a wide range of stream gradients, varying from 0.2 to 5.7 m/km; however, they are most abundant at lower (<2 m/km) gradients. They prefer small to medium-sized (<30 m width) streams.] |
| | | |
| '''Temperature:''' | | '''Temperature:''' |
− | [http://www.nwrc.usgs.gov/wdb/pub/hsi/hsi-015.pdf The temperature preference for adult green sunfish is 28.2° C and, when possible, they avoid temperatures above 31° C or below 26° C. Growth and food conversion efficiency increased as temperature increased from 13.2 to 28° C. Optimal temperatures for fry range from 18 to 26° C. The range of tolerance for bluegill fry is 10 to 36° C, and it is assumed that green sunfish fry tolerances are similar. Temperature requirements for juveniles are assumed to be the same as those for the adult life stage.] 2015-2016 temperatures in the mainstem ranged from 8.0-15.5 C between Lees Ferry and the Little Colorado River. 2015-2016 temperatures in the LCR ranged from 10.0-28.0 C. | + | [http://www.nwrc.usgs.gov/wdb/pub/hsi/hsi-015.pdf The temperature preference for adult green sunfish is 28.2° C and, when possible, they avoid temperatures above 31° C or below 26° C. Growth and food conversion efficiency increased as temperature increased from 13.2 to 28° C. Optimal temperatures for fry range from 18 to 26° C. The range of tolerance for bluegill fry is 10 to 36° C, and it is assumed that green sunfish fry tolerances are similar. Temperature requirements for juveniles are assumed to be the same as those for adults.] 2015-2016 temperatures in the mainstem ranged from 8.0-15.5 C between Lees Ferry and the Little Colorado River. 2015-2016 temperatures in the LCR ranged from 10.0-28.0 C. |
| | | |
| '''[http://gcdamp.com/index.php?title=GCDAMP_Sediment Turbidity] and Dissolved Oxygen:''' | | '''[http://gcdamp.com/index.php?title=GCDAMP_Sediment Turbidity] and Dissolved Oxygen:''' |
− | [http://www.dnr.state.mn.us/fish/sunfish/biology.html Green sunfish tolerate greater turbidity and lower dissolved oxygen than other sunfish.] [http://www.nwrc.usgs.gov/wdb/pub/hsi/hsi-015.pdf| Moderate (25-100 JTU) turbidities correlated with high species abundance are optimum.] [http://www.tandfonline.com/doi/abs/10.1577/1548-8659(1976)105%3C107%3AEOTOVR%3E2.0.CO%3B2 Ventilation rates were not affected by bentonite clay suspensions below 2,125 FTU (Formazin Turbidity Units) at 5 C, 1,012 FTU at 15 C, and 898 FTU at 25 C. At turbidity levels exceeding 1,012 FTU at 15 C and 898 FTU at 25 C ventilation rates increased 50-70%. Oxygen consumption rates were not affected by turbid suspensions of up to 3,500 FTU at any of the four temperatures.] | + | [http://www.dnr.state.mn.us/fish/sunfish/biology.html Green sunfish tolerate greater turbidity and lower dissolved oxygen than other sunfish.] [http://www.nwrc.usgs.gov/wdb/pub/hsi/hsi-015.pdf| Moderate (25-100 JTU) turbidities correlated with high species abundance are optimum.] [http://www.tandfonline.com/doi/abs/10.1577/1548-8659(1976)105%3C107%3AEOTOVR%3E2.0.CO%3B2 Ventilation rates were not affected by bentonite clay suspensions below 2,125 FTU at 5 C, 1,012 FTU at 15 C, and 898 FTU at 25 C. At turbidity levels exceeding 1,012 FTU at 15 C and 898 FTU at 25 C ventilation rates increased 50-70%. Oxygen consumption rates were not affected by turbid suspensions of up to 3,500 FTU at any of the four temperatures.] |
| | | |
| '''Salinity:''' | | '''Salinity:''' |
Updates
|
2016
The NPS is hosting a webinar on October 27, 2016 for stakeholders and interested parties to develop a range of options for Long Term Risk Reduction for Green Sunfish in the -12 RM sloughs, and other invasive fish species and locations in the Lees Ferry Reach of Glen Canyon National Recreation Area. This 'brainstorming' session will provide the basis for developing a range of alternatives to be analyzed in a Long Term Risk Reduction Plan and Environmental Assessment to be completed and implemented by October 2017. For more information contact Melissa Trammell at [email protected]
Sampling results from September 1-2, 2016
- 822 GSF total (806 in the upper slough, 16 in the lower); three YOY size classes + adults
- 22 CRP total (21 in upper, 1 in lower)
- 7 larval salamanders (all upper)
- 3 RBT (all lower)
- temperature in upper slough- 20.7 C (9/1)
- temperature in lower slough- 16.7 C (9/1, upper portion)
In August 2016, NPS reported the results of a survey they did in response to a report from AZGF that there may be green sunfish again in the Upper Slough in Glen Canyon. An infestation of green sunfish in this slough was why an HFE was not held in the fall of 2015. NPS reported on 8/16/2016: "Two Grand Canyon National Park technicians made a quick sample in the Upper Slough with a backpack electrofisher on Friday (August 12). Due to a river emergency downstream, they had limited time on site, but completed one sample (574 seconds) along the muddy shore on the river side of the slough. They captured 26 green sunfish and saw many more. Some captured green sunfish were in the 20 mm size range. A block net is still installed between the sloughs, but is compromised at current flows." NPS, Reclamation, USFWS, AZGF, and GCMRC are organizing to come up with both a short-term plan that addresses this latest infestation and to come up with a long-term fix for this problem. The hope is to have this addressed in some fashion before the end of the current HFE window as to not interfere with the possibility of conducting an HFE this fall.
2015
In July, 2015 AGFD biologists discovered an unusually large, reproducing population of invasive green sunfish in the slough. Green sunfish are prolific, with a single female producing up to 10,000 eggs. They are also voracious predators of native fish and their eggs. Biologists with the AGFD, NPS, USGS, FWS, and BOR determined that green sunfish pose a threat to native fish including the humpback chub (Gila cypha). A rapid response action is necessary to eradicate the population of sunfish before it spreads downstream into critical habitat for the endangered humpback chub. (2015 NPS Press Release)
Results from 2015 removals
- July 6: 43 (all lower slough)
- August 12-14: 954
- August 27-28: 2,574
- October 27-29: 775 (39 lower, 736 upper)
- November 15: 1,967 (chemical treatment; 180 lower, 1,787 upper)
|
|
Links and Information
|
|
Presentations and Papers
|
2016
2015
|
Acceptable Risk Calculations for GSF
|
Summary of an email from Melissa Trammell (NPS) 9/7/16:
Melissa has been looking into deriving a defensible acceptable risk number of green sunfish in the lower slough before conducting an HFE this year. She has been evaluating some work done by retired FWS biologist Pat Martinez who has done extensive evaluating illegal introductions of nonnative fish into various water bodies in the upper Colorado River Basin by looking at how many introductions and the number of fish per introduction were necessary before populations became established. The species Martinez examined were walleye, smallmouth bass, and northern pike; invasive species of concern in the upper Colorado River Basin. Green sunfish are most analogous to smallmouth bass in this example. If you look at slide 11 in his ppt, Martinez calculated that it took a mean of 1.25 adult SMB (a minimum of 0.25 SMB) per surface acre of receiving water body, to establish a population in the waterbodies he evaluated. He applied this value to rivers, particularly the Yampa River, by looking at total river miles times average width to get total surface acres. The point of the analysis was that the Program's removal targets for smallmouth bass for the Yampa River were about the same as the mean number needed for establishing a population, which indicated the Program needed to adjust their removal targets down.
Melissa noted that the calculation she gives below is a very conservative estimate, since GSF is less likely to establish a population in a river environment than a lake or pond, also, the calculation assumes the fish are adult, which is not the case for the GSF in the sloughs - they are primarily young-of-year. The calculation for the Colorado River below the sloughs down to the Little Colorado River, which is our area of primary concern, and applying the minimum of 0.25 fish per surface acre, suggests that 656 GSF released from the sloughs could establish a population somewhere in the Colorado River between Glen Canyon and the LCR. Given David Ward's (GCMRC) calculation that we captured about 12% of the total number of GSF present on any single electrofishing pass last year, that means a theoretical one-pass capture of 78 fish likely would represent a total population in the lower slough of 656 fish. Clay Nelson (GCMRC) only captured 4 (counting the ones in the little channel) in 40 minutes of sampling in the lower slough indicating that there were only about 33 GSF present in the lower slough when he sampled. Subsequent sampling on Sept 1-2 only produced 10 GSF in the lower slough; much lower densities than this risk assessment would consider problematic. Last year, in the lower slough, we removed about 1,800 GSF before the treatment, and collected about 200 afterwards. AGFD has suggested 100 GSF in the lower slough as an upper limit for an acceptable risk number and Ken (GCNRA) suggested 5 mature GSF/hour electrofishing. These are both much more conservative targets than the above calculations.
In summary, Melissa suggests that a very conservative acceptable risk value for the number of GSF in the lower slough prior to an HFE would be 300 GSF of any size, about 50% of the value calculated from Martinez' analysis. This number could either be calculated from depletion estimates as we progress through the removal effort, or by using 12% as the capture probability, thus a final pass should produce less than 36 total fish (12% of 300). If the number of fish remaining in the lower slough after all mechanical removal efforts is greater than that, she suggests moving towards implementing another rotenone treatment of the lower slough before conducting an HFE.
|
Other Stuff
|
|
|