Difference between revisions of "GCDAMP Sediment"

From Glen Canyon Dam AMP
Jump to: navigation, search
Line 141: Line 141:
 
'''2017'''
 
'''2017'''
 
*[[Media:Chapman 2017 Thesis-Determining tributary sediment exp flood deposits Marble Canyon ColRiv.pdf| Chapman, K., 2017, Determining the tributary sediment contribution to experimental flood deposits on the Colorado River in Marble Canyon, Grand Canyon, Arizona: Flagstaff, Northern Arizona University, MS thesis]]
 
*[[Media:Chapman 2017 Thesis-Determining tributary sediment exp flood deposits Marble Canyon ColRiv.pdf| Chapman, K., 2017, Determining the tributary sediment contribution to experimental flood deposits on the Colorado River in Marble Canyon, Grand Canyon, Arizona: Flagstaff, Northern Arizona University, MS thesis]]
*[https://digitalcommons.usu.edu/etd/6635 Hamill, D., 2017, Quantifying riverbed sediment using recreational-grade side scan sonar: Logan, Utah State University, MS thesis, 71 p., ]
+
*[https://digitalcommons.usu.edu/etd/6635 Hamill, D., 2017, Quantifying riverbed sediment using recreational-grade side scan sonar: Logan, Utah State University, MS thesis]
*[http://dx.doi.org/10.1002/2017JF004302 Buscombe et al., 2017, Compositional signatures in acoustic backscatter over vegetated and unvegetated mixed sand-gravel riverbeds: Journal of Geophysical Research: Earth Surface, v. 122, no. 10, p. 1771-1793]
+
*[http://dx.doi.org/10.1002/2017JF004302 Buscombe et al., 2017, Compositional signatures in acoustic backscatter over vegetated and unvegetated mixed sand-gravel riverbeds: Journal of Geophysical Research: Earth Surface]
*[https://doi.org/10.1016/j.geomorph.2017.08.037 Griffiths and Topping, 2017, Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets: Geomorphology, v. 296, p. 59-73]
+
*[https://doi.org/10.1016/j.geomorph.2017.08.037 Griffiths and Topping, 2017, Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets: Geomorphology]
*[https://doi.org/10.3133/ofr20171030 Kaplinski et al. 2017. Channel mapping river miles 29–62 of the Colorado River in Grand Canyon National Park, Arizona, May 2009: U.S. Geological Survey Open-File Report 2017–1030, 35 p]
+
*[https://doi.org/10.3133/ofr20171030 Kaplinski et al. 2017. Channel mapping river miles 29–62 of the Colorado River in Grand Canyon National Park, Arizona, May 2009: U.S. Geological Survey Open-File Report 2017–1030]
 
*[https://www.usbr.gov/uc/rm/amp/twg/mtgs/17jan26/AR1_Topping.pdf Project 1: Streamflow, Water Quality, Sediment Transport, and Sand Budgets in the Colorado River Ecosystem ]
 
*[https://www.usbr.gov/uc/rm/amp/twg/mtgs/17jan26/AR1_Topping.pdf Project 1: Streamflow, Water Quality, Sediment Transport, and Sand Budgets in the Colorado River Ecosystem ]
 
*[https://www.usbr.gov/uc/rm/amp/twg/mtgs/17jan26/AR2_Dean.pdf Project 2: Hydrologic Change and the Geomorphic Transformation of the Little Colorado River: Implications for Sediment Delivery to the Grand Canyon ]
 
*[https://www.usbr.gov/uc/rm/amp/twg/mtgs/17jan26/AR2_Dean.pdf Project 2: Hydrologic Change and the Geomorphic Transformation of the Little Colorado River: Implications for Sediment Delivery to the Grand Canyon ]
Line 150: Line 150:
  
 
'''2016'''
 
'''2016'''
*[https://pubs.er.usgs.gov/publication/pp1823 Topping et al. 2016. Long-term continuous acoustical suspended-sediment measurements in rivers — Theory, application, bias, and error: U.S. Geological Survey Professional Paper 1823, 98 p.]
+
*[https://pubs.er.usgs.gov/publication/pp1823 Topping et al. 2016. Long-term continuous acoustical suspended-sediment measurements in rivers — Theory, application, bias, and error: U.S. Geological Survey Professional Paper 1823]
*[http://pubs.usgs.gov/fs/2016/3053/fs20163053.pdf Voichick et al. 2016. Water clarity of the Colorado River—Implications for food webs and fish communities: U.S. Geological Survey Fact Sheet 2016–3053, 4 p.]
+
*[http://pubs.usgs.gov/fs/2016/3053/fs20163053.pdf Voichick et al. 2016. Water clarity of the Colorado River—Implications for food webs and fish communities: U.S. Geological Survey Fact Sheet 2016–3053]
 
*[http://www.usbr.gov/uc/rm/amp/amwg/mtgs/16aug24/Attach_11a.pdf Sandbar Modeling Project Update]
 
*[http://www.usbr.gov/uc/rm/amp/amwg/mtgs/16aug24/Attach_11a.pdf Sandbar Modeling Project Update]
 
*[http://www.usbr.gov/uc/rm/amp/amwg/mtgs/16aug24/Attach_07b.pdf Status of Sediment Resources – August 2016]
 
*[http://www.usbr.gov/uc/rm/amp/amwg/mtgs/16aug24/Attach_07b.pdf Status of Sediment Resources – August 2016]
Line 160: Line 160:
  
 
'''2015'''
 
'''2015'''
*[https://eos.org/features/building-sandbars-in-the-grand-canyon Grams et al. 2015. Building Sandbars in the Grand Canyon, EOS, Trans. Am. Geophys. Union, 96(11), 12–16. ]
+
*[https://eos.org/features/building-sandbars-in-the-grand-canyon Grams et al. 2015. Building Sandbars in the Grand Canyon, EOS, Trans. Am. Geophys. Union]
*[http://repository.asu.edu/items/30069 Alvarez. 2015. Turbulence, Sediment Transport, Erosion, and Sandbar Beach Failure Processes in Grand Canyon. Ph.D. Dissertation, Arizona State University, Tempe, AZ, 176pp.]
+
*[http://repository.asu.edu/items/30069 Alvarez. 2015. Turbulence, Sediment Transport, Erosion, and Sandbar Beach Failure Processes in Grand Canyon. Ph.D. Dissertation, Arizona State University, Tempe, AZ]
 
*[https://drive.google.com/file/d/0BwY-Z2c3NTUGeUVIWEwyY1l6RUE/view GCMRC Science Update - Sediment]
 
*[https://drive.google.com/file/d/0BwY-Z2c3NTUGeUVIWEwyY1l6RUE/view GCMRC Science Update - Sediment]
 
*[http://www.usbr.gov/uc/rm/amp/twg/mtgs/15jun11/Attach_02,.pdf GCMRC Science Update - Sediment]
 
*[http://www.usbr.gov/uc/rm/amp/twg/mtgs/15jun11/Attach_02,.pdf GCMRC Science Update - Sediment]
Line 214: Line 214:
  
 
'''2003'''
 
'''2003'''
*[https://pubs.usgs.gov/pp/pp1677/pdf/pp1677.pdf Topping et al. 2003.  Computation and analysis of the instantaneous-discharge record for the Colorado River at Lees Ferry, Arizona, May 8, 1921 through September 30, 2000: U.S. Geological Survey Professional Paper 1677, 118 p.]
+
*[https://pubs.usgs.gov/pp/pp1677/pdf/pp1677.pdf Topping et al. 2003.  Computation and analysis of the instantaneous-discharge record for the Colorado River at Lees Ferry, Arizona, May 8, 1921 through September 30, 2000: U.S. Geological Survey Professional Paper 1677]
  
 
'''1988'''
 
'''1988'''

Revision as of 11:18, 8 February 2018


The Paria River flowing into the mainstem Colorado River‎


Sediment and Geomorphology

Erosion of sandbars (beaches) along the Colorado River in Grand Canyon was first reported in the early 1970s, approximately 10 years after completion of Glen Canyon Dam. Since then, scientific studies have been conducted to monitor changes in sandbars and changes in the amount of sand stored on the bed of the river. One of the outcomes of these studies has been the implementation of flow experiments intended to rebuild eroded sandbars, especially by the release of controlled floods, also called High Flow Experiments, or HFEs, from Glen Canyon Dam. The sediment and geomorphology projects at Grand Canyon Monitoring and Research Center include the collection and processing of data to provide information needed to conduct controlled floods and to evaluate the outcome of each controlled flood and the long-term effects of controlled floods and normal dam operations on sediment-related resources. [1]

Beginning in 1998, recreational campsite area has also been measured on a subset of the sandbar monitoring sites. Campsite areas are defined as areas that are flat (less than 8 degree slope), smooth (not rocky), and clear of dense vegetation. Monitoring data show that vegetation expansion and sandbar erosion/deposition contribute to reductions in campsite area.

LTEMP Resource Goal for Sediment

Increase and retain fine sediment volume, area, and distribution in the Glen, Marble, and Grand Canyon reaches above the elevation of the average base flow for ecological, cultural, and recreational purposes.

Desired Future Condition for Sediment-Related Resources

High elevation open riparian sediment deposits along the Colorado River in sufficient volume, area, and distribution so as to provide habitat to sustain native biota and desired ecosystem processes
• Nearshore habitats for native fish
• Marsh and riparian habitat for fish (food chain maintenance)
• Cultural resource preservation
• Maintenance of camping beaches

---
---
---

Updates

SandbarMonitoring2016.jpg
[2]
2012 2014 HFE response.jpg
[3]
2016 SedimentSummary.jpg
[4]

Links and Information

Projects

Sediment Gages

Sand Mass Balance Reaches in Grand Canyon

Presentations and Papers

2017

2016

2015

2014

2013

2012

2011

2010

2003

1988

Other Stuff

Measuring turbidity

Question: What is the difference between the turbidity units NTU, FNU, FTU, and FAU? What is a JTU?

Summary: Turbidity units NTU, FNU, FTU, FAU, and JTU

Answer:

  • NTU stands for Nephelometric Turbidity Unit and signifies that the instrument is measuring scattered light from the sample at a 90-degree angle from the incident light.
  • FNU stands for Formazin Nephelometric Units and also signifies that the instrument is measuring scattered light from the sample at a 90-degree angle from the incident light. FNU is most often used when referencing the ISO 7027 (European) turbidity method.
  • NTU is most often used when referencing the USEPA Method 180.1 or Standard Methods For the Examination of Water and Wastewater.
  • When formazin was initially adopted as the primary reference standard for turbidity, units of FTU or Formazin Turbidity Units were used. These units, however, do not specify how the instrument measures the sample.

FAU or Formazin Attenuation Units signify that the instrument is measuring the decrease in transmitted light through the sample at an angle of 180 degrees to the incident light. This type of measurement is often made in a spectrophotometer or colorimeter and is not considered a valid turbidity measurement by most regulatory agencies.

A JTU or Jackson Turbidity Unit is a historical unit used when measurements were made visually using a Jackson Candle Turbidimeter. Water was poured into a tube until a flame underneath the tube could no longer be distinguished.

The turbidity units NTU, FNU, FTU, AND FAU are all based on calibrations using the same formazin primary standards. Therefore when a formazin standard is measured, the value for each of these units will be the same, however the value on samples may differ significantly.


Flash Flood videos