Difference between revisions of "HYDROPOWER"

From Glen Canyon Dam AMP
Jump to: navigation, search
(sizing)
 
(122 intermediate revisions by 2 users not shown)
Line 15: Line 15:
 
  <tr style='mso-yfti-irow:0;mso-yfti-firstrow:yes'>
 
  <tr style='mso-yfti-irow:0;mso-yfti-firstrow:yes'>
 
   <td width=40% valign=bottom align=left style='width:2.05in;padding:0in 5.4pt 0in 5.4pt'>
 
   <td width=40% valign=bottom align=left style='width:2.05in;padding:0in 5.4pt 0in 5.4pt'>
   <p class=MsoNormal>[[Image:Hydropower- FP- PIC.jpg|thumb|left|250px‎]]</p>
+
   <p class=MsoNormal></p>
 
   </td>
 
   </td>
 
   </tr>
 
   </tr>
 
</table>
 
</table>
 +
 +
[[Image:Generating Unit Flyaround- video clip USBR.jpg|center|400px]] <br>
 +
[[Media:Flyaround.mp4 |'''Fly Around Video Clip of Generating Unit''']]
 +
[[File:Water Intake Diagram.jpg|center|400px]]
  
 
<!--
 
<!--
  
 
------------Portal list on righthand side---------->
 
------------Portal list on righthand side---------->
|style="width:60%; font-size:95%;"|
+
|style="width:60%; font-size:120%;"|
  
'''HYDROPOWER''' [http://www.gcmrc.gov/research_areas/power_production/power_production_default.aspx GCMRC definition link]  Power production is included under GCMRC Science activities because minimizing impacts to power production is one of the goals of the Glen Canyon Dam Adaptive Management Program, therefore systematic monitoring and focused research is needed to determine how changes in dam operations to meet various environmental objectives may affect the availability and value of hydropower. Glen Dam is a 710-foot-high concrete arch dam, and the second highest dam in the United States. The powerplant at Glen Canyon Dam is made up of eight hydroelectric generation stations. The combined generation capability of all eight turbines is 1,320.0 megawatts. Glen Canyon Dam is a peaking power facility designed to rapidly change output levels in response to changes in demand for electricity. Although Glen Canyon Dam meets only a very small portion of the total energy demand in the western United States, it plays an important and valuable role in the region in terms of being able to respond rapidly to changing power demands throughout the western electrical grid.  
+
=='''The Hydropower Resource'''==
 +
[http://www.usbr.gov/uc/rm/crsp/gc/ '''Glen Canyon Dam'''] is the second highest (710 feet) concrete-arch dam in the United States, second only to Hoover Dam which stands at 726 feet. The 26.2 million acre-feet of water storage capacity in Lake Powell, created by Glen Canyon Dam, serves as a ‘bank account’ of water that is drawn on in times of drought. This stored water has made it possible to successfully weather extended dry periods by sustaining the needs of cities, industries, and agriculture throughout the West.
  
The hydropower resource at Glen Canyon Dam is monitored intensively by the Bureau of Reclamation and the U.S. Department of Energy’s Western Area Power Administration (WAPA), the entity that markets Glen Canyon Dam power to rural power distributors in the western United States. Tracking power generation, power market rates, necessary power purchases, and power revenue provides a mechanism for understanding how changes in Glen Canyon Dam operations affect energy generation and the energy market. In the near future, GCMRC intends to provide links through this web site to hourly data on energy generation, Basin Fund balances, monthly energy purchases, and other data routinely compiled by WAPA. In addition, GCMRC works with WAPA economists and energy system modelers to provide retrospective and predictive evaluations of the economic implications to hydropower from changing dam operations to meet environmental objectives of the Glen Canyon Dam Adaptive Management Program.
+
Hydroelectric power produced by the dam’s eight generators helps meet the electrical needs of the West’s rapidly growing population. With a total capacity of 1,320 megawatts, Glen Canyon Powerplant produces around five billion kilowatt-hours of hydroelectric power annually which is distributed by the Western Area Power Administration to Wyoming, Utah, Colorado, New Mexico, Arizona, Nevada, and Nebraska. In addition, revenues from production of hydropower help fund many important environmental programs associated with Glen and Grand canyons.
  
 +
The designation of Glen Canyon National Recreation Area in 1972, underscores the value and importance of the recreation benefits associated with Lake Powell and the Colorado River downstream of the dam. The GCNRA is managed by the National Park Service.
  
 +
Glen Canyon Dam is the key water storage unit of the Colorado River Storage Project, one of the most complex and extensive river resource developments in the world. Without it, development of the Upper Colorado River Basin states’ portion of the Colorado River would not have been possible. [http://www.usbr.gov/uc/rm/crsp/gc/]
  
 +
==[http://gcdamp.com/index.php?title=Long-term_Experimental_and_Management_Plan_(LTEMP) '''LTEMP Resource Goal for the Hydropower Resource''']==
 +
Maintain or increase Glen Canyon Dam electric
 +
energy generation, load following capability, and ramp rate capability, and
 +
minimize emissions and costs to the greatest extent practicable, consistent
 +
with improvement and long-term sustainability of downstream resources.
 +
 +
==[http://gcdamp.com/index.php?title=Portal:Desired_Future_Conditions_-DFCs '''Desired Future Condition for the Hydropower Resource''']==
 +
• Glen Canyon Dam capacity and energy generation is maintained and increased, so as to produce the greatest practicable amount of power and energy, consistent with the other DFCs.<br>
 +
• Ensure continued delivery of Glen Canyon Dam hydropower to the existing customers who have entered into long-term firm power contracts with WAPA.<br>
 +
• Ensure sufficient and efficient production of Glen Canyon Dam hydropower in order to provide the revenues to support the CRSP facilities and purposes.<br>
 +
• Maintain the operational flexibility (including but not limited to load following capability, ramp rates, and emergency operations allowances) that enable Reclamation and WAPA to meet the system operating and other regulatory requirements of WECC, North American Electric Reliability Corporation and the Federal Energy Regulatory Commission, as well as emergency operating criteria for safety and human health situations.<br>
 +
• Maximize the environmental benefits of hydropower generation at Glen Canyon Dam.<br>
 +
• Minimize carbon emissions through hydropower generation at Glen Canyon Dam.
  
 
|}<!--
 
|}<!--
Line 36: Line 56:
 
----------Strapline immediately below banner---------->
 
----------Strapline immediately below banner---------->
 
{| style="width:100%; height:50px" border=1px solid #ccc; background:#cedff2
 
{| style="width:100%; height:50px" border=1px solid #ccc; background:#cedff2
! style="width=33%; background:#cedff2;" | [[TBD|TBD]]<br>(Motions)
+
! style="width=33%; background:#cedff2;" | [[TBD|---]]<br>
! style="width=33%; background:#cedff2;" | [[TBD|TBD]] <br>(TBD)<br>
+
! style="width=33%; background:#cedff2;" | [[Hydropower-General Learning Page| '''Hydropower - Online Training''']] <br>
 
+
! style="width=33%; background:#cedff2;" | [[TBD|---]]<br>
! style="width=33%; background:#cedff2;" | [[TBD|TBD]]<br>(TBD)
+
 
|}
 
|}
  
Line 45: Line 64:
 
|class="MainPageBG" style="width:55%; border:1px solid #cef2e0; background:#f5faff; vertical-align:top; color:#000;"|
 
|class="MainPageBG" style="width:55%; border:1px solid #cef2e0; background:#f5faff; vertical-align:top; color:#000;"|
 
{|width="100%" cellpadding="2" cellspacing="5" style="vertical-align:top; background:#f5faff;"
 
{|width="100%" cellpadding="2" cellspacing="5" style="vertical-align:top; background:#f5faff;"
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3bfb1; text-align:left; color:#000; padding:0.2em 0.4em;">GROUP MEMBERS</h2>
+
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3bfb1; text-align:left; color:#000; padding:0.2em 0.4em;">Western Area Power Administration (WAPA)</h2>
*Currently No Ad-Hoc Groups directly linked to Hydropower
+
|-
 +
|style="color:#000;"|
 +
 
 +
WAPA's Colorado River Storage Project (CRSP) is one of five of its regions. Our main offices include a Headquarters office in Lakewood, Colorado; regional offices in Salt Lake City, Utah; Billings, Montana; Loveland, Colorado; Phoenix, Arizona; and Folsom, California. CRSP's Energy Management and Marketing Office (EMMO) is located in ​Montrose, Colorado.
 +
 
 +
The CRSP Region carries out WAPA’s mission in Arizona, Utah, Colorado, New Mexico, Nevada, Wyoming and Texas. We sell about 5,300 gigawatthours to cities and towns, rural electric cooperatives, Native American tribes, irrigation districts and federal and state agencies. This is enough energy to provide electric power for a year to 1.2 million homes.
 +
 
 +
CRSP markets power from the Colorado River Storage Project, its participating projects (Dolores and Seedskadee) and the Collbran and Rio Grande projects. These resources comprise 11 powerplants located in Arizona, Colorado, New Mexico, Utah and Wyoming and are marketed together as the Salt Lake City Area/Integrated Projects. We also market power from the Provo River Project and Olmsted Project in Utah; and the Falcon-Amistad Project in Texas. Transmission service is provided by transmission facilities in Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming either owned or leased by WAPA.
 +
 
 +
We work together with our customers to provide new products and services tailored to their individual needs and are strongly committed to protecting the delicate balance of the Colorado River. Agencies that manage the river’s resources must weigh many interests, including flood control, drought mitigations, irrigation, recreation, hydropower, endangered species and historic properties.  CRSP engages with all interested stakeholders in balancing these interests with the needs of water and electrical energy customers.
 +
 
 +
Since the 1980s, for example, we have been actively involved in ongoing environmental studies with diverse stakeholders regarding operations at Glen Canyon Dam. These and similar studies at Flaming Gorge Dam and the Aspinall Units represent WAPA’s commitment to engage with other interested parties in best managing the resources of the Colorado River and its tributaries. [https://www.wapa.gov/project/crsp-management-center/]   
 +
 
 +
[[File:CRSPprofile.jpg|center|thumb|600px|http://gcdamp.com/images_gcdamp_com/2/23/Jeka_PPT_Western_CRPS_Aug_2013_AMWG.pdf]]
  
 +
|-
 +
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;"> Colorado River Energy Distributors Association (CREDA) </h2>
 
|-
 
|-
 
|style="color:#000;"|
 
|style="color:#000;"|
 +
 +
CREDA is a regional association whose members include more than 155 municipal and rural electric cooperative utilities in Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming.  CREDA members serve nearly three million electric consumers in these six states. CREDA’s member utilities purchase more than 85 percent of the power produced by the Glen Canyon and Flaming Gorge Dams and other features of the Colorado River Storage Project (CRSP).  CREDA member utilities are consumer-owned, not-for-profit utilities whose primary responsibility is to provide reliable, low-cost service to the consumers they serve. [https://www.credanet.org/#/]
  
 
|-
 
|-
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3bfb1; text-align:left; color:#000; padding:0.2em 0.4em;">News</h2>
+
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;"> How does operations at Glen Canyon Dam fit into operations with other CRSP hydropower units? </h2>
 
|-
 
|-
|style="color:#000;"|  
+
|style="color:#000;"|
  
 +
[[File:CRSP generation v demand.JPG|center|thumb|600px|https://www.usbr.gov/uc/progact/amp/twg/2018-01-25-twg-meeting/AR04.pdf]]
  
*(Source: 63rd annual report 9-30-2011_Upper Colorado River Commission)
+
|-
* At optimum operations, the eight generators at Glen Canyon Dam are capable of producing '''1,320''' megawatts of power.
+
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;"> What is Regulation and how does Glen Canyon Dam provide it? </h2>
* Water releases from the dam occur at 200-230 feet below the surface of Lake Powell at full pool.
+
|-
* Temperature: Year round temperatures of '''45 degrees F to 50 degrees F'''.
+
|style="color:#000;"|
* Since the signing of the final operating criteria in February 1997, powerplant releases do not exceed 25,000 cfs, other than during HFE's or emergency situations, and have most often averaged between 10,000 cfs and 20,000 cfs.
+
*[http://www.usbr.gov/uc/rm/crsp/gc/faq.html '''LINK''' to USBR GCD facts]
+
[[File:USBR- Q& A on GCD Hydropower.jpg|450px|lect|USBR- Q& A on GCD Hydropower]]
+
[[File:GRAPH- Basin Study- Power Resources vulnerability.jpg |450px]]
+
  
 +
As a control area operator, Western “regulates” the transmission system within a prescribed geographic area. Western is required to react to moment-by-moment changes in electrical demand within this area. Regulation means that “automatic generation control” will be used to adjust the power output of electric generators within a prescribed area in response to changes in the system frequency, time error, and tie-line loading, to maintain the scheduled level of generation in accordance with prescribed NERC criteria. The “record” used to calculate the degree to which Western is responding to these change on the transmission system is called the “ACE” - Area Control Error. 
  
 +
Hydro facilities such as Glen Canyon have an inherent design that allows them to respond rapidly to changes in power system demands. Other control area operators, across the nation, that do not have hydropower plants must either build small units (natural gas or oil-fired being the most likely) or add this capability to the design of larger units.
  
|}
+
The transmission system that Western distributes power through is dynamic. Load requirements are constantly changing as a result of either the demands of the customers connected to it or changes that occur in other interconnected power systems. Western maintains the ACE signal to record its response to the fluctuations in system “loading”; (an effort to maintain a balance between power being consumed and power being generated - described above). If more demand is placed on the transmission system than is being generated, the resulting ACE is negative. Generators automatically respond to this condition by increasing generation. If demand is less than generation, ACE is positive. Generators automatically respond to this condition by reducing generation. The targeted ACE is zero.
  
 +
The ACE signal that is sent to Glen Canyon where it is effectively added to, or subtracted from, the existing scheduled hourly generation base point. Therefore, at any moment during the day or night, Glen Canyon might be producing more or less power than the current hourly megawatt schedule.
 +
 +
The ACE signal is transmitted to Glen Canyon Dam every four seconds. The NERC requirement for regulation is that the ACE must “cross” the zero target every 10 minutes. The frequent “swings” in generation are described in the MOU signed by Reclamation and Western (4):
 +
 +
“These changes which occur many times during the hour are both positive and negative in relation to the schedule. The resulting output from Glen Canyon generators is an envelope of generation swings that are frequent, small in magnitude, the average of which approximates the original schedule.”[https://www.wapa.gov/regions/CRSP/PlanProject/Pages/glen-canyon-operations.aspx]
 +
 +
In addition to daily scheduled fluctuations for power generation, the instantaneous releases from Glen Canyon Dam may also fluctuate to provide 40 megawatts (mw) of system regulation.  These instantaneous release adjustments stabilize the electrical generation and transmission system and translate to a range of about 1,200 cfs above or below the hourly scheduled release rate.  Under system normal conditions, fluctuations for regulation are typically short lived and generally balance out over the hour with minimal or no noticeable impacts on downstream river flow conditions.
 +
 +
Releases from Glen Canyon Dam can also fluctuate beyond scheduled releases when called upon to respond to unscheduled power outages or power system emergencies.  Depending on the severity of the system emergency, the response from Glen Canyon Dam can be significant, within  the full range of the operating capacity of the power plant for as long as is necessary to maintain balance in the transmission system.  Glen Canyon Dam typically maintains 30 mw (approximately 880 cfs) of generation capacity in reserve in order to respond to a system emergency even when generation rates are already high.  System emergencies occur fairly infrequently and typically require small responses from Glen Canyon Dam.  However, these responses can have a noticeable impact on the river downstream of Glen Canyon Dam. [https://www.usbr.gov/uc/water/crsp/cs/gcd.html]
 +
 +
|}
  
  
Line 77: Line 123:
 
|class="MainPageBG" style="width:45%; border:1px solid #cedff2; background:#f5faff; vertical-align:top;"|
 
|class="MainPageBG" style="width:45%; border:1px solid #cedff2; background:#f5faff; vertical-align:top;"|
 
{| width="100%" cellpadding="2" cellspacing="5" style="vertical-align:top; background:#f5faff;"
 
{| width="100%" cellpadding="2" cellspacing="5" style="vertical-align:top; background:#f5faff;"
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;">INFORMATION</h2>
+
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;">Links and Information</h2>
 
|-
 
|-
 
|style="color:#000;"|
 
|style="color:#000;"|
*[http://www.creda.org/Documents/Messaging%20Final%20100510.pdf '''CREDA fact Sheet on Hydropower''']
+
*[[The Basin Fund]] page
*[https://www.nvenergy.com/company/energytopics/where.cfm '''One megawatt''' is equivalent to the power required to serve about '''600 households''']
+
*[[GCDAMP- GTMAX| GTMax page]]
*
+
*[https://www.wapa.gov/Pages/western.aspx Western Area Power Administration (WAPA)]
*
+
*[https://www.credanet.org/#/ Colorado River Energy Distribution Association (CREDA)]
*
+
*[https://www.usbr.gov/power/index.html U.S. Bureau of Reclamation (USBR) Power Office]
 +
*[https://gcdamp.com/index.php/GCDAMP_SEAHG_Page SocioEconomic Ad Hoc Group (SEAHG) page]
  
 
|-
 
|-
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;">Reports and Links </h2>
+
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;"> [https://www.wapa.gov/About/the-source/Pages/annual-reports.aspx WAPA Annual Reports] </h2>
 
|-
 
|-
 
|style="color:#000;"|
 
|style="color:#000;"|
*'''[http://www.wapa.gov/crsp/planprojectscrsp/gcdrod.html WAPA- CRSP Management Center- Operation Constraints]'''
+
 
*'''[http://www.gcmrc.gov/research_areas/power_production/power_production_default.aspx USGS-GCMRC Hydropower Link]'''
+
*[https://www.wapa.gov/newsroom/Publications/Documents/FY-2016-annual-report.pdf FY16 Annual Report]
*
+
*[https://www.wapa.gov/newsroom/Publications/Documents/FY-2016-statistical-appendix.pdf FY16 Statistical Appendix]
*
+
*[https://www.wapa.gov/newsroom/Publications/Documents/FY-2015-annual-report.pdf FY15 Annual Report]
 +
*[https://www.wapa.gov/newsroom/Publications/Documents/FY-2015-statistical-appendix.pdf FY15 Statistical Appendix]
 +
*[https://www.wapa.gov/About/Pages/results-of-operation.aspx FY15 Results of Operations]
 +
*[https://www.wapa.gov/newsroom/Publications/Documents/2014AR.pdf FY14 Annual Report]
 +
*[https://www.wapa.gov/newsroom/Documents/AR-2013.pdf FY13 Annual Report]
 +
*[https://www.wapa.gov/newsroom/Documents/annrep12.pdf FY12 Annual Report]
 +
 
 +
|-
 +
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;">Presentations and Papers</h2>
 +
|-
 +
|style="color:#000;"|
 +
 
 +
'''2024'''
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2024-04-11-twg-meeting/20240411-HydropowerResourceUpdate-508-AMWD.pdf Hydropower Resource Update ]
 +
 
 +
'''2023'''
 +
*[[Media:Basin Fund AMWG Aug 2023.pdf| CRSP and Basin Fund Overview]]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2023-06-15-twg-meeting/20230615-ImpactsHydropowerCustomersBasinFundConductingExperiments-508-UCRO.pdf Impacts to Hydropower Customers and the Basin Fund from Conducting Experiments]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2023-01-26-twg-meeting/20230126-AnnualReportingMeeting-GlenCanyonHydropowerProductionValue-508-UCRO.pdf Glen Canyon Hydropower Production and Value]
 +
 
 +
'''2022'''
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2022-10-13-twg-meeting/20221013-EffectsFrequentUseBypassGlenCanyonDamElectricalGenerationTransmission-508-UCRO.pdf Effects of Frequent Use of Bypass at Glen Canyon Dam on Electrical Generation and Transmission ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2022-10-13-twg-meeting/20221013-UpdateProjectNActivitiesIncludingDiscussionHydropowerImprovementFlows--508-UCRO.pdf Update on Project N Activities Including a Discussion of Hydropower Improvement Flows ]
 +
 
 +
'''2021'''
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2021-02-11-amwg-meeting/20210211-ColoradoRiverStorageProjectMarketActivityUCBasinFundUpdates-508-UCRO.pdf Colorado River Storage Project Market Activity and UC Basin Fund Updates ]
 +
*[[Media:AR_01-14-21.pdf| Glen Canyon Hydropower Production & Value: Status & Trends, 2020]]
 +
 
 +
'''2020'''
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2020-02-12-amwg-meeting/20200212-GCMRCScienceUpdatesPart3-Presentation-508-UCRO.pdf GCMRC 2019 Annual Reporting Meeting Overview – Part 3 ]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2020-02-12-amwg-meeting/20200212-ColoradoRiverStorageProjectFundingUpdate-Presentation-508-UCRO.pdf Colorado River Storage Project Funding Update ]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2020-02-12-amwg-meeting/20200212-GlenCanyonOverview-Presentation-508-UCRO.pdf Glen Canyon Dam Overview ]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2020-01-13-twg-meeting/20200113-AnnualReportingMeeting-IdentifyingTotalEconomicValueHydropowerGlenCanyonDam-Presentation-508-UCRO.pdf Identifying the total economic value of hydropower at Glen Canyon Dam and implications for adaptive management ]
 +
 
 +
'''2019'''
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2019-03-06-amwg-meeting/20190306-ColoradoRiverEnergyDistributorsAssociation-Presentation-508-UCRO.pdf Colorado River Energy Distributors Association (CREDA)]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2019-03-14-twg-meeting/20190314-GlenCanyonDamHydropowerProductionValueStatusTrends2019-Presentation-508-UCRO.pdf Glen Canyon Dam Hydropower Production and Value Status & Trends, 2019 ]
 +
 
 +
'''2018'''
 +
*[https://qcnr.usu.edu/wats/colorado_river_studies/files/documents/Clayton.pdf The Future of the Colorado River]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2018-08-22-amwg-meeting/Attach_09.pdf Colorado River Storage Project (CRSP) PPT]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2018-01-25-twg-meeting/AR04.pdf Glen Canyon Dam Hydropower Production and Value, Status and Trends 2018 PPT]
 +
 
 +
'''2017'''
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2017-01-26-twg-meeting/AR17_Ellsworth.pdf Status and Trends of Hydropower and Energy PPT]
 +
 
 +
'''2016'''
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2016-08-24-amwg-meeting/Attach_08.pdf Basin Fund and Revenue Overview]
 +
 
 +
'''2015'''
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2015-08-26-amwg-meeting/Attach_08.pdf CRSP Rates, Revenue, and Basin Fund Overview]
 +
 
 +
'''2013'''
 +
*[[Media:Jeka PPT Western CRPS Aug 2013 AMWG.pdf|Overview of the Colorado River Storage Project (CRSP) Management Center for Western Area Power Administration (WAPA)]]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2013-08-08-amwg-meeting/Attach_13b.pdf Capacity and Energy Handout]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2013-08-08-amwg-meeting/Attach_13c.pdf Question & Answer Transcript]
 +
*[[Media:Wilhite HFEworkshop hydropower.pdf|High Flow Experiments: Financial and Operational Effects on CRSP and the Electric Power System]]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2013-01-24-twg-meeting/Attach_12.pdf Final Products of the 2011 Hydropower Knowledge Assessment and GTMax Model Review Workshop Dated January 4, 2012]
 +
 
 +
'''2010'''
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2010-03-15-twg-meeting/Attach_06.pdf Electrical Power System Economics]
 +
 
 +
'''2009'''
 +
*[[Media:CREDA Brief 2-20-09 FINAL 737pm.pdf| CREDA brief on “the generation of hydroelectric power, as an incident of the foregoing purposes.”]]
 +
*[https://www.usbr.gov/uc/progact/amp/twg/2009-09-29-twg-meeting/Attach_16.pdf Life Cycle Impact Assessment of Renewable Electrical Generation Technologies Compared to the WECC Baseline]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2009-08-12-amwg-meeting/Attach_04a.pdf Energy and Water Development Appropriations bill, 2010 language (note last paragraph on GCD Adaptive Management Program)]
 +
*[https://www.usbr.gov/uc/progact/amp/amwg/2009-08-12-amwg-meeting/Attach_04b.pdf Letter from various U.S. senators, to Daniel Inouye, Byron Dorgan, etc., Subj: Concerns on Energy and Water Development Appropriations Bill, H.R. 3183]
 +
 
 +
|-
 +
 
 +
|-
 +
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;">Adding Generation to the Bypass Tubes</h2>
 +
|-
 +
|style="color:#000;"|
 +
 
 +
*[[Media:Generation at Outlet Glen Canyon Dam Plan of Study CRSP Power Peaking Capacity (March 1981).pdf|Generation at Outlet Glen Canyon Dam Plan of Study CRSP Power Peaking Capacity (March 1981)]]
 +
 
 +
|-
 +
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;"> What does it mean that "generation of hydroelectric power is an incident of the foregoing purposes" in [https://www.usbr.gov/uc/rm/crsp/index.html the 1956 CRSP Act (43 U.S.C. § 620)]? </h2>
 +
|-
 +
|style="color:#000;"|
 +
 
 +
In GRAND CANYON TRUST vs U.S. BUREAU OF RECLAMATION, Grand Canyon Trust asserted that “[h]ydropower is an incidental benefit of every other stated purpose of the dam,” citing 43 U.S.C. § 620. Pl. Reply at p. 39. This is not a
 +
correct statement of the law. The relevant portion of 43 U.S.C. § 620 provides “for the generation of hydroelectric power, as an incident of the foregoing purposes.” Congress did not provide that hydropower is “incidental to” or “an incidental benefit of” the Colorado River Storage Project. Hydropower is an “incident of” the other Congressionally defined purposes. Used in this manner and in this context, the word “incident” means “related to,” or “resulting from,” and does not mean that hydropower resources are an “incidental” or minor authorized purpose of the Colorado River Storage Project. [[Media:CREDA Brief 2-20-09 FINAL 737pm (1).pdf|[1]]]
 +
 
 +
|-
 +
! <h2 style="margin:0; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;"> Ramp rates and beach stability </h2>
 +
|-
 +
|style="color:#000;"|
 +
 
 +
[https://asu.pure.elsevier.com/en/publications/erosion-of-river-sandbars-by-diurnal-stage-fluctuations-in-the-co Alvarez and Schmeeckle (2013)] that found that bank stability is reached at a slope of approximately 14°. The erosion of intermediate slopes (18° - 22°) is controlled by seepage erosion, whereas the erosion of steep slopes (26°) is governed by mass failures. Erosion rates per diurnal cycle do not depend on ramp rates, but they increase with sandbar steepness. Therefore, steep sandbar faces would rapidly erode by mass failure and seepage erosion to shallower stable slopes in the absence of other erosion processes, regardless of dam discharge ramp rates. Their experiments only address seepage erosion and mass failure; increasing the daily magnitude and/or duration of peak discharge may increase the erosion of bars by turbulent sediment transport.
  
 
|-
 
|-
Line 99: Line 236:
 
|-  
 
|-  
 
|style="color:#000;"|
 
|style="color:#000;"|
 +
 +
[[File:GRAPH- GCD levels.jpg |center|700px]]
 +
 +
*[http://www.nbc11news.com/content/news/Under-Pressure-Dams-make-less-electricity-in-drought-489928131.html Under Pressure: Dams make less electricity in drought]
 +
*[http://gcdamp.com/index.php?title=Wave_attenuation Wave attenuation of hydropower releases at Glen Canyon Dam]
 +
*[http://www.creda.org/Documents/Messaging%20Final%20100510.pdf CREDA Fact Sheet on Hydropower and Glen Canyon Dam]
 +
*[[Media:Jeka PPT Capacity Energy handout 2013.pdf| Capacity & Energy handout]]
 +
*[[Media:140403 JRaub-SRP Explaination on why Capacity is important.pdf | Explanation on Why Capacity is Important]]
 +
*[[Media:Messaging 2.pdf |Importance of Hydropower Capacity]]
 +
*[https://www.youtube.com/watch?v=HlIueeNnnOU&feature=youtu.be Video: What is Black Start?]
 +
*[https://www.youtube.com/watch?v=vh_aCAHThTQ Video: How does a Transformer work?]
 +
 +
[[File:Reservoirs Hydro ColoradoRiver.jpg|center|700px]]
 +
 +
[[File:USBR- Q& A on GCD Hydropower.jpg|center|600px|lect|USBR- Q& A on GCD Hydropower]]
  
 
<br>
 
<br>
  
 
|}
 
|}
 
----
 
*[[File:Water Intake Diagram.jpg|350px]]
 
*[[File:Turbine Replacement (2).jpg|300px]]
 
*[http://www.usbr.gov/uc/rm/amp/amwg/mtgs/13feb20/Attach_04.pdf| usbr/amwg/mtgs/13feb20/Attach_04]
 

Latest revision as of 14:02, 30 October 2024




Generating Unit Flyaround- video clip USBR.jpg

Fly Around Video Clip of Generating Unit

Water Intake Diagram.jpg

The Hydropower Resource

Glen Canyon Dam is the second highest (710 feet) concrete-arch dam in the United States, second only to Hoover Dam which stands at 726 feet. The 26.2 million acre-feet of water storage capacity in Lake Powell, created by Glen Canyon Dam, serves as a ‘bank account’ of water that is drawn on in times of drought. This stored water has made it possible to successfully weather extended dry periods by sustaining the needs of cities, industries, and agriculture throughout the West.

Hydroelectric power produced by the dam’s eight generators helps meet the electrical needs of the West’s rapidly growing population. With a total capacity of 1,320 megawatts, Glen Canyon Powerplant produces around five billion kilowatt-hours of hydroelectric power annually which is distributed by the Western Area Power Administration to Wyoming, Utah, Colorado, New Mexico, Arizona, Nevada, and Nebraska. In addition, revenues from production of hydropower help fund many important environmental programs associated with Glen and Grand canyons.

The designation of Glen Canyon National Recreation Area in 1972, underscores the value and importance of the recreation benefits associated with Lake Powell and the Colorado River downstream of the dam. The GCNRA is managed by the National Park Service.

Glen Canyon Dam is the key water storage unit of the Colorado River Storage Project, one of the most complex and extensive river resource developments in the world. Without it, development of the Upper Colorado River Basin states’ portion of the Colorado River would not have been possible. [1]

LTEMP Resource Goal for the Hydropower Resource

Maintain or increase Glen Canyon Dam electric energy generation, load following capability, and ramp rate capability, and minimize emissions and costs to the greatest extent practicable, consistent with improvement and long-term sustainability of downstream resources.

Desired Future Condition for the Hydropower Resource

• Glen Canyon Dam capacity and energy generation is maintained and increased, so as to produce the greatest practicable amount of power and energy, consistent with the other DFCs.
• Ensure continued delivery of Glen Canyon Dam hydropower to the existing customers who have entered into long-term firm power contracts with WAPA.
• Ensure sufficient and efficient production of Glen Canyon Dam hydropower in order to provide the revenues to support the CRSP facilities and purposes.
• Maintain the operational flexibility (including but not limited to load following capability, ramp rates, and emergency operations allowances) that enable Reclamation and WAPA to meet the system operating and other regulatory requirements of WECC, North American Electric Reliability Corporation and the Federal Energy Regulatory Commission, as well as emergency operating criteria for safety and human health situations.
• Maximize the environmental benefits of hydropower generation at Glen Canyon Dam.
• Minimize carbon emissions through hydropower generation at Glen Canyon Dam.

---
Hydropower - Online Training
---

Western Area Power Administration (WAPA)

WAPA's Colorado River Storage Project (CRSP) is one of five of its regions. Our main offices include a Headquarters office in Lakewood, Colorado; regional offices in Salt Lake City, Utah; Billings, Montana; Loveland, Colorado; Phoenix, Arizona; and Folsom, California. CRSP's Energy Management and Marketing Office (EMMO) is located in ​Montrose, Colorado.

The CRSP Region carries out WAPA’s mission in Arizona, Utah, Colorado, New Mexico, Nevada, Wyoming and Texas. We sell about 5,300 gigawatthours to cities and towns, rural electric cooperatives, Native American tribes, irrigation districts and federal and state agencies. This is enough energy to provide electric power for a year to 1.2 million homes.

CRSP markets power from the Colorado River Storage Project, its participating projects (Dolores and Seedskadee) and the Collbran and Rio Grande projects. These resources comprise 11 powerplants located in Arizona, Colorado, New Mexico, Utah and Wyoming and are marketed together as the Salt Lake City Area/Integrated Projects. We also market power from the Provo River Project and Olmsted Project in Utah; and the Falcon-Amistad Project in Texas. Transmission service is provided by transmission facilities in Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming either owned or leased by WAPA.

We work together with our customers to provide new products and services tailored to their individual needs and are strongly committed to protecting the delicate balance of the Colorado River. Agencies that manage the river’s resources must weigh many interests, including flood control, drought mitigations, irrigation, recreation, hydropower, endangered species and historic properties. CRSP engages with all interested stakeholders in balancing these interests with the needs of water and electrical energy customers.

Since the 1980s, for example, we have been actively involved in ongoing environmental studies with diverse stakeholders regarding operations at Glen Canyon Dam. These and similar studies at Flaming Gorge Dam and the Aspinall Units represent WAPA’s commitment to engage with other interested parties in best managing the resources of the Colorado River and its tributaries. [2]

Colorado River Energy Distributors Association (CREDA)

CREDA is a regional association whose members include more than 155 municipal and rural electric cooperative utilities in Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. CREDA members serve nearly three million electric consumers in these six states. CREDA’s member utilities purchase more than 85 percent of the power produced by the Glen Canyon and Flaming Gorge Dams and other features of the Colorado River Storage Project (CRSP). CREDA member utilities are consumer-owned, not-for-profit utilities whose primary responsibility is to provide reliable, low-cost service to the consumers they serve. [3]

How does operations at Glen Canyon Dam fit into operations with other CRSP hydropower units?

What is Regulation and how does Glen Canyon Dam provide it?

As a control area operator, Western “regulates” the transmission system within a prescribed geographic area. Western is required to react to moment-by-moment changes in electrical demand within this area. Regulation means that “automatic generation control” will be used to adjust the power output of electric generators within a prescribed area in response to changes in the system frequency, time error, and tie-line loading, to maintain the scheduled level of generation in accordance with prescribed NERC criteria. The “record” used to calculate the degree to which Western is responding to these change on the transmission system is called the “ACE” - Area Control Error.

Hydro facilities such as Glen Canyon have an inherent design that allows them to respond rapidly to changes in power system demands. Other control area operators, across the nation, that do not have hydropower plants must either build small units (natural gas or oil-fired being the most likely) or add this capability to the design of larger units.

The transmission system that Western distributes power through is dynamic. Load requirements are constantly changing as a result of either the demands of the customers connected to it or changes that occur in other interconnected power systems. Western maintains the ACE signal to record its response to the fluctuations in system “loading”; (an effort to maintain a balance between power being consumed and power being generated - described above). If more demand is placed on the transmission system than is being generated, the resulting ACE is negative. Generators automatically respond to this condition by increasing generation. If demand is less than generation, ACE is positive. Generators automatically respond to this condition by reducing generation. The targeted ACE is zero.

The ACE signal that is sent to Glen Canyon where it is effectively added to, or subtracted from, the existing scheduled hourly generation base point. Therefore, at any moment during the day or night, Glen Canyon might be producing more or less power than the current hourly megawatt schedule.

The ACE signal is transmitted to Glen Canyon Dam every four seconds. The NERC requirement for regulation is that the ACE must “cross” the zero target every 10 minutes. The frequent “swings” in generation are described in the MOU signed by Reclamation and Western (4):

“These changes which occur many times during the hour are both positive and negative in relation to the schedule. The resulting output from Glen Canyon generators is an envelope of generation swings that are frequent, small in magnitude, the average of which approximates the original schedule.”[4]

In addition to daily scheduled fluctuations for power generation, the instantaneous releases from Glen Canyon Dam may also fluctuate to provide 40 megawatts (mw) of system regulation. These instantaneous release adjustments stabilize the electrical generation and transmission system and translate to a range of about 1,200 cfs above or below the hourly scheduled release rate. Under system normal conditions, fluctuations for regulation are typically short lived and generally balance out over the hour with minimal or no noticeable impacts on downstream river flow conditions.

Releases from Glen Canyon Dam can also fluctuate beyond scheduled releases when called upon to respond to unscheduled power outages or power system emergencies. Depending on the severity of the system emergency, the response from Glen Canyon Dam can be significant, within the full range of the operating capacity of the power plant for as long as is necessary to maintain balance in the transmission system. Glen Canyon Dam typically maintains 30 mw (approximately 880 cfs) of generation capacity in reserve in order to respond to a system emergency even when generation rates are already high. System emergencies occur fairly infrequently and typically require small responses from Glen Canyon Dam. However, these responses can have a noticeable impact on the river downstream of Glen Canyon Dam. [5]


Links and Information

WAPA Annual Reports

Presentations and Papers

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2013

2010

2009

Adding Generation to the Bypass Tubes

What does it mean that "generation of hydroelectric power is an incident of the foregoing purposes" in the 1956 CRSP Act (43 U.S.C. § 620)?

In GRAND CANYON TRUST vs U.S. BUREAU OF RECLAMATION, Grand Canyon Trust asserted that “[h]ydropower is an incidental benefit of every other stated purpose of the dam,” citing 43 U.S.C. § 620. Pl. Reply at p. 39. This is not a correct statement of the law. The relevant portion of 43 U.S.C. § 620 provides “for the generation of hydroelectric power, as an incident of the foregoing purposes.” Congress did not provide that hydropower is “incidental to” or “an incidental benefit of” the Colorado River Storage Project. Hydropower is an “incident of” the other Congressionally defined purposes. Used in this manner and in this context, the word “incident” means “related to,” or “resulting from,” and does not mean that hydropower resources are an “incidental” or minor authorized purpose of the Colorado River Storage Project. [1]

Ramp rates and beach stability

Alvarez and Schmeeckle (2013) that found that bank stability is reached at a slope of approximately 14°. The erosion of intermediate slopes (18° - 22°) is controlled by seepage erosion, whereas the erosion of steep slopes (26°) is governed by mass failures. Erosion rates per diurnal cycle do not depend on ramp rates, but they increase with sandbar steepness. Therefore, steep sandbar faces would rapidly erode by mass failure and seepage erosion to shallower stable slopes in the absence of other erosion processes, regardless of dam discharge ramp rates. Their experiments only address seepage erosion and mass failure; increasing the daily magnitude and/or duration of peak discharge may increase the erosion of bars by turbulent sediment transport.

Other Stuff

GRAPH- GCD levels.jpg
Reservoirs Hydro ColoradoRiver.jpg
USBR- Q& A on GCD Hydropower