Difference between revisions of "WATER QUALITY"

From Glen Canyon Dam AMP
Jump to: navigation, search
Line 69: Line 69:
 
*[[Media:Johnson 1981 Oxygen depleted waters Lake Powell.pdf| Johnson and Page. 1981. Oxygen depleted waters: Origin and distribution in Lake Powell, Utah - Arizona. Proceedings of the Symposium on surface water impediments. American Society of Civil Engineers, NY.]]  
 
*[[Media:Johnson 1981 Oxygen depleted waters Lake Powell.pdf| Johnson and Page. 1981. Oxygen depleted waters: Origin and distribution in Lake Powell, Utah - Arizona. Proceedings of the Symposium on surface water impediments. American Society of Civil Engineers, NY.]]  
 
*[http://onlinelibrary.wiley.com/doi/10.1029/WR015i004p00873/full Johnson and Merritt. 1979. Convective and Advective Circulation of Lake Powell, Utah-Arizona, During 1972-1975. Water Resources Research. 15:4]
 
*[http://onlinelibrary.wiley.com/doi/10.1029/WR015i004p00873/full Johnson and Merritt. 1979. Convective and Advective Circulation of Lake Powell, Utah-Arizona, During 1972-1975. Water Resources Research. 15:4]
*[http://www.nap.edu/catalog/1832.html Stanford and Ward. 1990. Limnology of Lake Powell and the Chemistry of the Colorado River. Colorado River Ecology and Dam Management: Proceedings of a Symposium May 24-25, 1990 Santa
+
*[http://www.nap.edu/catalog/1832.html Stanford and Ward. 1990. Limnology of Lake Powell and the Chemistry of the Colorado River. Colorado River Ecology and Dam Management: Proceedings of a Symposium May 24-25, 1990 Santa Fe, New Mexico. Chap 5.]
Fe, New Mexico. Chap 5.]
+
 
*[http://www.tandfonline.com/doi/full/10.1080/10402381.2017.1293756 Wildman and Vernieu. 2017. Turbid releases from Glen Canyon Dam, Arizona, following rainfall-runoff events of September 2013, Lake and Reservoir Management]
 
*[http://www.tandfonline.com/doi/full/10.1080/10402381.2017.1293756 Wildman and Vernieu. 2017. Turbid releases from Glen Canyon Dam, Arizona, following rainfall-runoff events of September 2013, Lake and Reservoir Management]
 
*[http://onlinelibrary.wiley.com/doi/10.1002/hyp.211/abstract Kelly 2001. Influence of reservoirs on solute transport: A regional-scale approach. Hydrol. Process. 15, 1227–1249]
 
*[http://onlinelibrary.wiley.com/doi/10.1002/hyp.211/abstract Kelly 2001. Influence of reservoirs on solute transport: A regional-scale approach. Hydrol. Process. 15, 1227–1249]
Line 143: Line 142:
  
 
==Adding power generation to the bypass tubes==
 
==Adding power generation to the bypass tubes==
Allows for drawing water from deeper in Lake Powell: colder and more oxygenated water
+
Allows for drawing water from deeper in Lake Powell: colder and water may be more oxygenated  
 
*[[Media:Generation at Outlet Glen Canyon Dam Plan of Study CRSP Power Peaking Capacity (March 1981).pdf|Generation at Outlet Glen Canyon Dam Plan of Study CRSP Power Peaking Capacity (March 1981)]]
 
*[[Media:Generation at Outlet Glen Canyon Dam Plan of Study CRSP Power Peaking Capacity (March 1981).pdf|Generation at Outlet Glen Canyon Dam Plan of Study CRSP Power Peaking Capacity (March 1981)]]
 +
 +
==Other methods:==
 +
*Forebay diffusers
 +
*Side Stream Super-Saturation
 +
*Aeration
 +
*Turbine Venting
 +
*Surface Water Pumps (impellers)
 +
[http://www.mobleyengineering.com/technologies/hydropowerenhancements.html (Mobley Engineering: Hydropower Enhancement Technologies)]
  
 
|-
 
|-

Revision as of 17:32, 30 October 2017


ForebayWaterQuality.jpg

Desired Future Condition for Water Quality

Water quality with regards to dissolved oxygen, nutrient concentrations and cycling, turbidity, temperature, etc., is sufficient to support natural ecosystem functions, visitor safety and visitor experience to the extent feasible and consistent with the life history requirements of focal aquatic species.
• Ecosystem-sustaining nutrient distribution, flux, and cycling.
• Hydro-physical conditions and characteristics of the CRE necessary to sustain aquatic biota.
• Acceptable water quality for human health and visitor experience.

---
---
---

Updates

2017 Water Quality PEP

Reading List


Water Quality Gages

Papers and presentations

2017

2016

2015

2014

2012

2010

2006

2005

Modifying releases at Glen Canyon Dam to improve water quality in the Lees Ferry reach

Rough operation of the turbines

Increases the oxygenation of water going through the power plant Is damaging to the turbines

Oxygenation of the tailwater using the bypass tubes

The Basin States have maintained that according to Sec 602a of the Colorado River Basin Project Act (1968), the bypass tubes at Glen Canyon Dam can only be used to avoid anticipated spills from Lake Powell. The Basin States have agreed to bypass at Glen Canyon Dam for HFEs on the condition that it be done as part of an experiment and not a management action or operational decision. Costs associated with any release that bypasses the powerplant for reasons other than to avoid a spill or for experimentation relating to HFEs would have to be borne by the GCDAMP (see DOI determination for costs of the 2004 BHBF).

Adding power generation to the bypass tubes

Allows for drawing water from deeper in Lake Powell: colder and water may be more oxygenated

Other methods:

  • Forebay diffusers
  • Side Stream Super-Saturation
  • Aeration
  • Turbine Venting
  • Surface Water Pumps (impellers)

(Mobley Engineering: Hydropower Enhancement Technologies)

Other Stuff