FY18-20 GCMRC Triennial Budget and Workplan

From Glen Canyon Dam AMP
Revision as of 17:32, 13 March 2018 by Cellsworth (Talk | contribs)

Jump to: navigation, search


20182020TWP.jpg

GCMRC Triennial Budget and Work Plan -- Fiscal Years 2018-2020

The Glen Canyon Dam Adaptive Management Program (GCDAMP) is a science-based process for continually improving management practices related to the operation of Glen Canyon Dam (GCD) by emphasizing learning through monitoring, research, and experimentation, in fulfillment of the consultation and research commitments of the Grand Canyon Protection Act (GCPA). The Bureau of Reclamation’s (Reclamation) Upper Colorado Region is responsible for administering funds for the GCDAMP and providing those funds for monitoring, research, and stakeholder involvement. The majority of program funding is derived from hydropower revenues; however, supplemental funding is provided by various Department of the Interior (DOI) agencies that receive appropriations. These agencies include Reclamation, the U.S. Geological Survey (USGS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), and the Bureau of Indian Affairs (BIA). The budget and work plan for fiscal years (FY) 2018–2020 was largely developed in consideration of the Record of Decision for the Glen Canyon Dam Long-Term Experimental and Management Plan Environmental Impact Statement (LTEMP EIS) and on the basis of outcomes from previous work plans. Additional consideration was given to meeting commitments outlined in: (1) the 2007 USFWS Biological Opinion for the Proposed Adoption of Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead (2007 Opinion); (2) the 2016 USFWS Biological Opinion for the Long-Term Experimental and Management Plan Environmental Impact Statement (LTEMP EIS) (2016 Opinion); and (3) Section 106 of the National Historic Preservation Act (NHPA) and the Draft 2016 Programmatic Agreement. A consumer price index (CPI) of 1% was assumed for FY 2018, FY 2019, and FY 2020. The budget and work plan will be updated annually with the actual CPI for the upcoming year. [1]

Long-term Experimental and Management Plan (LTEMP)
The LTEMP provides the basis for decisions that identify management actions and experimental options that will provide a framework for adaptively managing Glen Canyon Dam operations over the next 20 years
LTEMP Science Plan
The LTEMP Science Plan describe a strategy by which monitoring and research data in the natural and social sciences will be collected, analyzed, and provided to DOI, its bureaus, and to the GCDAMP in support of implementation of LTEMP.
Core Monitoring Plan
The GCMRC Core Monitoring Plan (CMP) describes the consistent, long-term, repeated measurements using scientifically accepted protocols to measure status and trends of key resources to answer specific questions. Core monitoring is implemented on a fixed schedule regardless of budget or other circumstances (for example, water year, experimental flows, temperature control, stocking strategy, nonnative control, etc.) affecting target resources.
Monitoring and Research Plan
The GCMRC Monitoring and Research Plan (MRP) specifies (1) core monitoring activities, (2) research and development activities, and (3) long-term experimental activities consistent with the strategies and priorities established in this SSP to be conducted over the next 5 years to address some of the strategic science questions associated with AMWG priority questions.
Budget and Workplan
The GCMRC Triennial Work Plan (TWP) identifies the scope, objectives, and budget for monitoring and research activities planned for a 3-year period. When completed, the triennial work plan will be consistent with the MRP.


FY 2018-2020 Triennial Budget and Work Plan

Chapter 1. Bureau of Reclamation Glen Canyon Dam Adaptive Management Program Triennial Budget and Work Plan—Fiscal Years 2018–2020

  • Adaptive Management Work Group (AMWG) Costs
  • Technical Work Group (TWG) Costs
  • Program Administration, ESA Compliance, and Management Actions
  • NHPA Compliance and Cultural Resources Program Management

Chapter 2. U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center Triennial Budget and Work Plan—Fiscal Years 2018–2020

  • Administrative History and Guidance That Informs This Work Plan
  • 2011 Draft General Core Monitoring Plan
  • 2012 AMWG Desired Future Conditions
  • 2016 LTEMP ROD
  • 2017 LTEMP Science Plan

Project A: Streamflow, Water Quality, and Sediment Transport and Budgeting in the Colorado River Ecosystem

The primary linkage between Glen Canyon Dam (GCD) operations and the characteristics of the physical, biological, and cultural resources of the CRe downstream from GCD is through the stage, discharge, water quality, and sediment transport of the Colorado River. This project makes and interprets the basic measurements of these parameters at locations throughout the CRe. The data collected by this project are used to implement the HFE Protocol (i.e., trigger and design HFE hydrographs), to evaluate the reach-scale sand mass-balance response to the HFE Protocol (U.S. Department of the Interior, 2011; Grams and others, 2015), and to evaluate the downstream effects of releases conducted under the LTEMP EIS (U.S. Department of the Interior, 2016a, b). The data collected by this project are also required by the other physical, ecological, and sociocultural projects funded by the GCDAMP. Most of the project funds support basic data collection at USGS gaging stations, with only a small amount of project funds supporting interpretation of basic data. The funds requested under this proposal cover only ~70% of the costs required to operate and interpret data at the network of USGS gaging stations used by this project; other funding for this network is provided to the USGS Arizona Water Science Center from funds appropriated by Congress for the USGS, the Bureau of Land Management, and the Arizona Department of Environmental Quality (AZDEQ). This project is designed to provide measurements of stage (i.e., water elevation), discharge (i.e., streamflow), water quality, and suspended sediment at sufficiently high temporal resolutions (~15-minute) to resolve changes in these parameters and to allow accurate determination of suspended-sediment loads for use in sediment budgeting. The proposed monitoring under this project will be very similar to that conducted over the last 5-10 years.

The 3 elements of this project are as follows:

Stream gaging:

This element partially funds the collection, serving, and interpretation of continuous 15-minute measurements of stage and discharge on the main-stem Colorado River at USGS streamflow gaging stations located at river miles (RM) 0, 30, 61, 87, 166, and 225, and at gaging stations on the major tributaries and in a representative subset of the smaller, formerly ungaged tributaries (Water Holes Canyon, Badger Creek, Tanner Wash, House Rock Wash, North Canyon, Shinumo Wash, and Bright Angel Creek).

Water quality:

This element funds the collection, serving, and interpretation of continuous 15-minute measurements of water temperature, specific conductance (a measure of salinity), turbidity, and dissolved oxygen at the above-mentioned six mainstem Colorado River gaging stations, as well as continuous measurements of water temperature at additional stations on the Colorado River and in the major tributaries. In addition, this element provides a small amount of funding toward the logistics required to collect samples for laboratory water-chemistry analyses (including nutrients) at gaging stations on the Colorado River.

Sediment transport and budgeting:

This element funds the collection, serving, and interpretation of continuous 15-minute measurements and also episodic measurements of suspended sediment and bed sediment at the above-mentioned gaging stations on the Colorado River and its tributaries. The continuous suspended-sediment measurements at the six mainstem Colorado River gaging stations, and the episodic suspended-sediment measurements in the tributaries are used in the construction of mass-balance sand budgets. These budgets inform scientists and managers on the effects of dam operations on the sand mass balance in the CRe between Lees Ferry and Lake Mead divided into 6 reaches (Figure 1). Increases in the sand mass balance in a reach indicate an increase in the amount of sand in that reach and therefore an increase in the amount of sand available for sandbar deposition during HFEs, whereas decreases in the sand mass balance in a reach indicate a net loss of sand from that reach. All measurements made by this project are made using standard USGS and other peer-reviewed techniques. All of these measurements can be plotted and/or downloaded at: https://www.gcmrc.gov/discharge_qw_sediment/ or https://cida.usgs.gov/gcmrc/discharge_qw_sediment/. Plots of continuous parameters can be made in time-series or duration-curve formats. In addition, the user-interactive mass-balance sand budgets for the six CRe reaches are available at this website (Sibley and others, 2015). In addition to the collection and serving of the basic streamflow, water-quality, and sedimenttransport data, time is spent in this project interpreting the data and reporting on the results and interpretations in peer-reviewed articles in the areas of hydrology, water quality, and sediment transport. The interpretive papers published by this project are designed to address key questions relevant to river management, especially to management in the GCDAMP. To date, this ongoing project has published over 80 peer-reviewed journal articles, books, proceedings articles, and USGS reports, a full listing of which are available at: qt-science_center_objects link. This website also provides urls to download these publications.

Project B. Sandbar and Sediment Storage Monitoring and Research

The purposes of this project are to a) track the effects of individual HFEs on sandbars, b) monitor the cumulative effect of successive HFEs and intervening operations on sandbars and sand conservation, and c) investigate the interactions between dam operations, sand transport, and eddy sandbar dynamics.

The sand deposits on the bed and banks of the Colorado River in Glen, Marble, and Grand Canyons are directly affected by the operations of GCD. Depending on the relative magnitudes of dam releases and tributary sediment inputs, sand either accumulates or is eroded from the bed of the river. When evaluated over long river reaches, sand is evacuated from the river bed during sustained periods of high dam-releases (Topping and others, 2000; Grams and others, 2015) and sand accumulates during periods of average dam-releases and substantial tributary sediment inputs (Grams, 2013; Grams and others, 2013). Sandbars along the river banks above average base flow (about 8,000 ft3/s) also change in response to dam operations, but in a different pattern, because they are not always inundated and because they comprise a small fraction of the sand in the system (Hazel and others, 2006; Grams and others, 2013). These deposits aggrade significantly during HFEs that exceed powerplant capacity (Schmidt and Grams, 2011) and, to a lesser extent, during powerplant capacity flows (Hazel and others, 2006). These deposits typically erode during normal powerplant operations between HFEs (Hazel and others, 2010). One of the stated goals in the ROD for the recently completed LTEMP (U.S. Department of the Interior, 2016) is to "increase and retain fine sediment volume, area, and distribution...for ecological, cultural, and recreational purposes." Expectations of improved sandbar building and conservation of sediment were among the criteria used in the selection of the preferred alternative. One of the central components of the selected alternative is the continued implementation of HFEs for building sandbars. The LTEMP extends the program initiated with the Environmental Assessment for Development and Implementation of a Protocol for HighFlow Experimental Releases from Glen Canyon Dam (HFE Protocol) which asked the question, "Can sandbar building during HFEs exceed sandbar erosion during periods between HFEs, such that sandbar size can be increased and maintained over several years?" In other words, does the volume of sand aggraded into eddies and onto sandbars during controlled floods exceed the volume eroded from sandbars during intervening dam operations? Additional, conditiondependent experiments are included in the preferred alternative, with objectives related to sandbar building and sediment conservation. Project B includes elements that are designed to evaluate whether the sediment-related goals of the LTEMP are met, provide the information that is needed to proceed with or abort LTEMP experimental activities, and evaluate the effectiveness of implemented experiments.

Thus, one of the most important objectives of Project B is to monitor the changes in sandbars over many years, including a period that contains several controlled floods, in order to compile the information required to answer the fundamental question of the HFE Protocol. The monitoring program described here continues the program implemented in previous work plans and is based on annual measurements of sandbars, using conventional topographic surveys supplemented with daily measurements of sandbar change using ‘remote cameras’ that autonomously and repeatedly take photographs. These annual measurements and daily photographs are included in Project Element B.1. This project element also includes work to more efficiently conduct quantitative analyses of the remote camera images. Because these longterm monitoring sites represent only a small proportion of the total number of sandbars in Marble and Grand Canyons, Project Element B.2 includes periodic measurements of nearly all sandbars within individual 50 to 130 km sediment budget reaches (see Project A for description of sediment budget reaches).

Another critical piece of information that is needed to evaluate the outcome of the HFE Protocol and the LTEMP is the change in total sand storage in long river reaches. HFEs build sandbars by redistributing sand from the low-elevation portion of the channel to sandbars in eddies and on the banks. The sand available for deposition is the sand that is in storage on the channel bed, which is the sum of the sand contributed by the most recent tributary inputs, any sand that may have accumulated since GCD was completed, and any sand that remains from the pre-dam era. The goal of the HFE protocol is to accomplish sandbar building by mobilizing only the quantity of sand most recently contributed by the Paria River, thereby preventing depletion of pre-dam era sand. Some of the sand mobilized by HFEs is deposited in eddies where it builds eddy sandbars. Some of the sand is eventually transported downstream to Lake Mead. The most efficient floods for the purposes of sandbar building are those that maximize sandbar aggradation yet minimize the amount of sand transported far downstream, thus minimizing losses to sand storage. Dam operations between HFEs also transport sand downstream, causing decreases in sand storage. Sediment delivered by the LCR also contributes to sand storage downstream from the LCR confluence. However, this tributary has contributed only a small fraction of the quantity of sand delivered by the Paria River (Griffiths and Topping, 2015) and is not included in the HFE protocol.

Measured trends in sand storage along the channel bed combined with trends in exposed sandbars will provide the necessary context on which to base future decisions about dam operations and other potential management options. If sand storage is maintained or increased, we expect the response to future HFEs to be similar to or better than that observed following recent HFEs. In contrast, depletions of fine sediment in the active channel are potentially irreversible if sand supply from tributaries is consistently less than downstream transport. This situation would threaten the long-term ability to maintain eddy sandbars. These long-term trends are measured in Project Element B.2, which includes one “channel mapping” campaign to map changes in sand storage in both lower Marble Canyon (RM 30-61) and eastern Grand Canyon (RM 61-87) in 2019. Because these sediment-budget reaches have been mapped previously and because mapping efficiency has increased, we are able to map longer river reaches in a single river trip than previously. These data will be used to provide long-term (8 to 10 year) assessments of sandbar and sand storage change for these reaches and a robust evaluation of 7 years of implementation of the HFE Protocol. Project Element B.3 includes work to improve the control network in support of this and other work plan projects, with focus on the segment between RM 87 and RM 166, which has never been mapped. The control work is needed to prepare for mapping this segment in the next (FY2021-23) work plan.

This project also includes one element that provides contingency data collection for HFE experiments. Project Element B.4 describes studies that will be conducted to monitor and evaluate the condition-dependent experiments that affect sandbars and sediment resources. This work plan also includes description of two research components that, because of budget constraints, were not funded. Project Element B.5 describes a modeling project to produce flow models that predict the inundation extent and flow velocities for dam operations and HFEs in Marble Canyon and improve capabilities for predicting sandbar response to dam operations. The modeling project element also includes description of proposed laboratory experiments to address the same suite of questions as the condition-dependent experimental HFEs are designed to test. Project Element B.6 is a research project that proposes to investigate river channel adjustment and redistribution of reservoir delta sediment on the Colorado River within the CRe between Diamond Creek and the western boundary of Grand Canyon National Park.

Project C. Riparian Vegetation Monitoring and Research

This project seeks to monitor riparian vegetation response to dam operations in order to determine if the LTEMP Resource Goals for riparian vegetation are being met (Elements 1 and 2), use the data created by riparian vegetation monitoring in Elements 1 and 2 to address gaps related to predicting the responses of vegetation to dam operations (Element 3), and support the implementation of experimental vegetation treatments directed by the LTEMP ROD (Element 4). Monitoring the state of riparian vegetation along the mainstem is ongoing and critical for understanding the effects of dam operations on riparian vegetation and associated resources. Long-term monitoring assesses if riparian vegetation is being maintained “in various stages of maturity, such that they are diverse, healthy, productive, self-sustaining, and ecologically appropriate” and assesses if dam operations under the new ROD, daily and experimental flows, have the expected result of “more native plant community cover, higher native plant diversity, a higher ratio of native to nonnative plants, less arrowweed, and more wetland,” (VanderKooi and others, 2017). This project utilizes annual field measurements (Element 1) and digital imagery (Element 2) for integrated monitoring of changes in vegetation at river segment (for example Glen Canyon, Marble Canyon, etc.) and system-wide scales. Included in monitoring are a 5-year assessment of vegetation change (Element 1) and an analysis of a new system-wide remote sensing vegetation classification for, providing an assessment of tamarisk beetle defoliation from 2009-2013 and sand/vegetation turnover dynamism (Element 2). Each of these products provides an assessment of the status of plant communities identified as being of interest or concern by stakeholders. Elements 1 and 2 are complementary methods of vegetation monitoring that determine status and trends at different spatial and temporal scales (Palmquist and others, in press). These two elements will be integrated through an assessment of relations between finescale, ground-based monitoring with the coarser-scale, spatially continuous remotely-sensed data. This assessment will allow us to identify the appropriate frequency of the ground-based monitoring (annual, biennial, or otherwise) and to integrate ecological processes occurring across different spatial and temporal scales.

Element 3 proposes to analyze vegetation data from Elements 1 and 2, existing historic vegetation data, and flow data to examine the influence of dam operations and other environmental variables on riparian vegetation distribution and address other knowledge gaps regarding vegetation response. A recent knowledge assessment that was conducted to identify the current understanding of vegetation response to dam operations elucidated uncertainties regarding how daily flows and experimental flows impact vegetation complexity, functional diversity, and species composition. We plan to address some of these uncertainties by creating predictive models of vegetation responses to LTEMP flow scenarios based on the vegetation monitoring and remote-sensing products outlined above (and described below). These predicted outcomes will be generated across multiple spatial scales in order to better understand how experimental flows are impacting the integrity of riparian vegetation. The results of this work will help predict vegetation response to dam operations outlined in the LTEMP, help assess if the LTEMP management goals for vegetation are advancing, and inform the parameters in which vegetation management will be most successful.

As stated in the LTEMP ROD, NPS and tribal partners will coordinate with GCMRC to conduct targeted vegetation removal and plantings, including “control of nonnative plant species and revegetation with native species (U.S. Department of Interior, 2016).” Project element 4 will help address information needs and management design required for the successful implementation of this required vegetation management. The NPS, Tribes, and other stakeholders will also seek to preserve sand resources, camp sites, and archeological sites through vegetation removals, restore native riparian plants by planting native species, and control exotic plants. The long-term success of planting efforts will depend on matching genetically suitable plant material to specific sites varying in substrate stability and existing vegetation. Monitoring of post-removal vegetation trajectories could identify how successional processes interact with dam operations, determine methods for the long-term preservation of these sites, and prioritize needs for future interventions on a site-by-site basis. These sites will encompass only a small portion of the riparian corridor and will have different goals and locations from the monitoring outlined in Elements 1 and 2, so this work cannot replace ongoing monitoring efforts throughout the CRe.

Project D. Geomorphic Effects of Dam Operations and Vegetation Management for Archaeological Sites

Glen Canyon Dam has reduced downstream sediment supply to the Colorado River by about 95% in the reach upstream of the Little Colorado River confluence and by about 85% below the confluence (Topping and others, 2000). Operation of the dam for hydropower generation has additionally altered the flow regime of the river in Grand Canyon, largely eliminating pre-dam low flows (i.e., below 5,000 ft3/s) that historically exposed large areas of bare sand (U.S. Department of the Interior, 2016a; Kasprak and others, 2017). At the same time, the combination of elevated low flows coupled with the elimination of large, regularly-occurring spring floods in excess of 70,000 ft3/s has led to widespread riparian vegetation encroachment along the river, further reducing the extent of bare sand (U.S. Department of the Interior, 2016a, Sankey and others, 2015).

The changes in the flow regime, the reductions in river sediment supply and bare sand, and the proliferation of riparian vegetation have affected the condition and physical integrity of archaeological sites and resulted in erosion of the upland landscape surface by reducing the transfer (termed “connectivity”) of sediment from the active river channel (e.g., sandbars) to terraces and other river sediment deposits in the adjoining landscape (U.S. Department of Interior, 2016a; Draut, 2012; East and others, 2016). Many archaeological sites and other evidence of past human activity are now subject to accelerated degradation due to reductions in sediment connectivity under current dam operations and riparian vegetation expansion tied to regulated flow regimes (U.S. Department of the Interior, 2016a; East and others, 2016).

The LTEMP EIS predicts that conditions for achieving the goal for cultural resources, termed “preservation in place”, will be enhanced as a result of implementing the selected alternative. HFEs are one component of the selected alternative that will be used to resupply sediment to sandbars in Marble and Grand Canyons, which in conjunction with targeted vegetation removal, is expected to resupply more sediment via wind transport to archaeological sites, depending on site-specific riparian vegetation and geomorphic conditions (Sankey and others, 2017). At the same time, HFEs can also directly erode some river sediment deposits containing cultural resources, particularly large terraces in the Glen Canyon reach (U.S. Department of Interior, 2016a).

This project quantifies the geomorphic effects of ongoing and experimental dam operations, as well as the geomorphic effects of riparian vegetation expansion and management, focusing on effects to the supply of sediment to cultural sites and terraces. The ongoing and experimental dam operations and vegetation management of interest are those that will be undertaken under the LTEMP ROD (U.S. Department of the Interior, 2016b) during the next 20 years. The data and analyses from this project will allow the GCDAMP to objectively evaluate whether and how these non-flow and flow actions affect cultural resources, vegetation, and sediment dynamics, and how they ultimately affect the long term preservation of cultural resources and other culturally-valued and ecologically important landscape elements located within the river corridor downstream of GCD.

Project E. Nutrients and Temperature as Ecosystem Drivers: Understanding Patterns, Establishing Links and Developing Predictive Tools for an Uncertain Future

Ecosystem temperature and nutrient dynamics can influence both species composition and metabolic rates across many different types of ecosystems (Allen and others, 2005; Brown and others, 2004; Elser and others, 2003; Elser and others, 1996; Yvon-Durocher and others, 2012). Given the importance of nutrients and temperature as drivers of the aquatic ecosystem, it is important to understand their spatio-temporal patterns both because they may be altered by management actions considered in the LTEMP, and because they may provide essential context for interpreting responses to flow experiments. Given the potential importance of nutrients and temperature in driving CRe dynamics, we propose monitoring, research and modeling to: 1) identify processes that drive spatial and temporal variation in nutrients and temperature within the CRe, and 2) establish quantitative and mechanistic links among these ecosystem drivers, primary production, and higher trophic levels. Parallel work in Lake Powell that aims to identify the controls on nutrient concentrations in the GCD outflow is planned with external funding from Bureau of Reclamation (see Appendix 1).

Both temperature and nutrients change in response to various processes. A dense network of stream gaging stations in Grand Canyon provides information on temperature at fine temporal resolutions (Project A) and a temperature model exists to predict downriver temperature (Wright and others, 2008). This model was used to predict responses of downriver native fish populations and warm water non-native fish species to management alternatives in the LTEMP. Although the Wright and others (2008) temperature model was a valuable tool for EIS modeling efforts, it has important limitations. For example, Wright and others (2008) clearly acknowledge that their model overestimates temperatures in downstream reaches during fall low flow months by as much as 2 °C, however, this assumption does not appear to have been acknowledged in LTEMP modeling of downstream temperatures. We are currently modifying Wright’s model and propose to finish this work in FY2018. These modifications are expected to improve downriver predictions.

In contrast to our detailed understanding of temperature, we lack even a basic understanding of gross patterns in nutrient concentrations and their variation over time and along the river. SRP, the most bioavailable phosphorus, is likely to be especially important given the high N:P in the CRe, but our understanding of patterns in soluble reactive phosphorus (SRP) availability is especially lacking. While continuous nutrient monitoring at Lees Ferry shows a strong correspondence between nutrient availability in the reservoir outflow and in the Lees Ferry reach (Vernieu, 2009), there are very few measurements of nutrients downstream of the Paria River inflow, with no measurements of SRP routinely made. While the dam releases contribute substantially more discharge than all tributary inputs combined, tributaries like the Paria River and LCR are the major sources of sediment and labile organic matter inputs to the Colorado River and can drive riverine suspended sediment dynamics independent of total river discharge (Topping and others, 2007; Ulseth, 2012). In the Paria River, total phosphorus concentrations are 1-2 orders of magnitude higher than in the mainstem Colorado (Lawson, 2007; Deemer unpublished data). While total phosphorus and SRP are both relatively low during baseflow in the LCR (Deemer, unpublished data; Moody and Muehlbauer, unpublished data), we expect that storm events may flush significant amounts of P into the Colorado before this P has time to be sequestered via abiotic reactions (as is highly likely to be occuring during baseflow). More generally, nutrient loads are likely to vary, at least in part, with suspended sediment loads such that storms may be important to overall budgets in the Paria River as well.

Indirect evidence suggests that reservoir inputs may dominate nutrient concentrations in the upper parts of the CRe, but other factors may become more important downriver. For example, as nutrient concentrations in Lake Powell declined during 2014, Colorado River invertebrate and fish populations between GCD and Lees Ferry and near the LCR confluence declined dramatically. However, in more downriver portions of the CRe, the catch of humpback chub, especially juvenile life stages, was higher in 2014 than in prior years. This suggests either that nutrient limitation is currently not a controlling factor in the lower half of the CRe (see hypotheses H5, H6, and H8 in Project G), or that there are unaccounted sources of nutrients in the lower CRe. These unaccounted sources of nutrients in the lower CRe could consist of tributary inputs, release of geologically bound P under different environmental conditions, or elevated mineralization with higher temperature and/or organic matter inputs (see hypothesis H7 in Project G).

To address these critical management uncertainties, we propose a multi-pronged approach that aims to better understand processes affecting temperature and nutrient availability in the CRe, and to further investigate links between these drivers and Colorado River food webs. We have used the available literature and data to generate a suite of 11 hypotheses which are outlined below. While there are many other hypotheses one could generate to describe patterns in nutrients and temperature and their effects on higher trophic levels, we have done our best to select what we believe are the most probable, management-relevant, and feasible-to-test hypotheses with the intention that we can build on this information in future work plans.

Project F. Aquatic Invertebrate Ecology

Project G. Humpback Chub Population Dynamics throughout the Colorado River Ecosystem

Project H. Salmonid Research and Monitoring

Project I. Warm-Water Native and Non-Native Fish Research and Monitoring

Project J. Socioeconomic Research in the Colorado River Ecosystem

Project K. Geospatial Science and Technology

Project L. Remote Sensing Overflight in Support of Long-term Monitoring and LTEMP

Project M. Administration

Project N. Hydropower Monitoring and Research

Appendices

  • Appendix 1. Lake Powell Water Quality Monitoring
  • Appendix 2a. Potential Budget Allocation Summary by Project and Year
  • Appendix 2b. Potential Budget Allocation – FY2018
  • Appendix 2c. Potential Budget Allocation – FY2019
  • Appendix 2d. Potential Budget Allocation – FY2020
  • Appendix 2e. Potential Budget Allocation Experimental Projects

Links

Documents and Direction

ADHOC Group Information Needs

Papers and Presentations

2017

FY 2018-2020 Triennial Budget and Work Plan Process

Draft Program Areas for 2018-20 TWP

Based on ROD Resource Categories (see page 6 of the ROD)

  • Natural Processes: Not used (is an evaluation of above resources as related to “natural” benchmarks)


LTEMP BiOp Conservation Measures [2] (2016)

Humpback Chub

Ongoing actions:

  • Translocations of humpback chub into tributaries of the Colorado River in Marble and Grand Canyons
  • Spring and fall humpback chub population estimate
  • Control or removal of nonnative fish in tributaries prior to chub translocations
  • Humpback chub refuge population at a federal hatchery
  • Ensure that a stable or upward trend of humpback chub mainstem aggregations can be achieved by:
  1. Annual monitoring of the Little Colorado River humpback chub aggregation (e.g., juvenile chub monitoring parameters).
  2. Annual monitoring in the mainstem Colorado River to determine status and trends of humpback chub.
  3. Periodic surveys to identify additional aggregations and individual humpback chub.
  4. Evaluate existing aggregations and determining drivers of these aggregations.
  5. Explore means of expanding humpback chub populations outside of the Little Colorado River Inflow aggregation.
  • Disease and parasite monitoring

New actions:

  • Feasibility study for translocation of humpback chub into Upper Havasu Creek (above Beaver Falls).
  • Evaluate other tributaries for potential translocations.

Razorback Sucker

Ongoing actions:

  • Larval and small-bodied fish monitoring.

Actions to benefit all native aquatic species

Ongoing actions:

  • Investigate the possibility of renovating Bright Angel and Shinumo Creeks with a chemical piscicide.
  • Remove brown trout (and other nonnative species) from Bright Angel Creek and the Bright Angel Creek Inflow reach of the Colorado River, and from other areas where new or expanded spawning populations develop.

New actions:

  • Explore the efficacy of a temperature control device at the dam to respond to potential extremes in hydrological conditions due to climate conditions that could result in nonnative fish establishment.
  • Preventing the passage of deleterious invasive nonnative fish through Glen Canyon Dam.
  • Fund the NPS and GCMRC on the completion of planning and compliance to alter the backwater slough at River Mile (RM) 12.
  • Develop a plan for implementing rapid response control efforts for newly establishing or existing deleterious invasive nonnative species.
  • Experimental use of TMFs to inhibit brown trout spawning and recruitment in Glen Canyon

Southwestern willow flycatcher and Yuma Ridgway’s rail

  • Conduct Yuma Ridgway’s rail surveys
  • Conduct southwestern willow flycatcher surveys

LTEMP Experimental and Management Actions [3]

TWG Budget Preliminary List Exercise

The Technical Work Group (TWG) at its January 27, 2017 meeting identified a preliminary list of budget items that it wanted to be considered in the FY 18-20 TWP.

Hot Topics:

  • Humpback chub in Western Grand Canyon
  • Invasive species surveillance and response (brown trout and green sunfish in Glen Canyon)
  • Foodbase Augmentation
  • Nutrients
  • Synthesis of TEK and indigenous knowledge systems and integrate into AMP
  • Hualapai Archive Project
  • Arch site and terrace monitoring in Glen Canyon Reach
  • Integration of tribal value and knowledge into treatment of archaeological sites
  • Cool water TCD and generation on the bypass tubes
  • Experiments that could increase hydropower value
  • Impacts of TMFs
  • HFE monitoring
  • Study how lower down ramping rates of HFEs relates to slower eroding beaches via building lower sloping beaches
  • Re-evaluate triggers for spring HFEs to include biological considerations as well as sediment
  • TWP Chapter 2 to represent the Strategic Science Plan

The following are a photo record of the TWG Budget Preliminary List Exercise. You can click on the following images 1x and 2x to get to a larger view.

Overall

Overall

Multiple Topics

20170126 multiple.jpg 20170126 multiple2.jpg 20170126 multiple3.jpg

Sediment

20170126 sediment.jpg

Archaeological and Cultural Resources

20170126 Archaeology.jpg

Aquatic Foodbase

20170126 Foodbase.jpg

Humpback chub

20170126 chub1.jpg 20170126 chub2.jpg 20170126 chub4.jpg 20170126 chub3.jpg

Trout

20170126 trout.jpg 20170126 TMFs.jpg

Invasive Fish Species

20170126 InvasiveFish.jpg

Hydropower and Energy

20170126 Hydropower.jpg